Difference between revisions of "GUDHI Tutorial"
m |
|||
Line 10: | Line 10: | ||
== Creating the example point cloud == | == Creating the example point cloud == | ||
− | The | + | The basis of any topological data analysis routine is a point cloud of data. For instance, the following lines of code generate <math>n</math> points lying on a circle of radius <math>r</math> with Gaussian noise of width <math>\sigma</math> added on top: |
Vector_of_points pts; | Vector_of_points pts; | ||
− | std::random_device rd; | + | std::random_device rd; // obtain a seed for the random number engine |
− | std::mt19937 gen(rd()); | + | std::mt19937 gen(rd()); // mersenne_twister_engine seeded with rd() |
std::uniform_real_distribution<> dist_uniform(0.,2.*M_PI); | std::uniform_real_distribution<> dist_uniform(0.,2.*M_PI); | ||
std::normal_distribution<double> dist_normal(0.,sigma); | std::normal_distribution<double> dist_normal(0.,sigma); | ||
Line 26: | Line 26: | ||
== Generating alpha shapes == | == Generating alpha shapes == | ||
+ | Using the GUDHI library, the following lines of code compute all alpha shapes of the point cloud <code>pts</code> at once. | ||
+ | // Set maximum alpha radius to infinity, restoring the Delaunay complex in the limiting case | ||
+ | double alpha_square_max_value {std::numeric_limits<double>::infinity()}; | ||
+ | |||
+ | // Initialize the alpha complex of the point cloud | ||
+ | Gudhi::alpha_complex::Alpha_complex<Kernel> alpha_complex_from_points(pts); | ||
+ | |||
+ | // Initialize the corresponding simplex tree to store the complex | ||
+ | Simplex_tree simplex_tree; | ||
+ | |||
+ | // Create the complex | ||
+ | alpha_complex_from_points.create_complex(simplex_tree, alpha_square_max_value) | ||
+ | A simplex tree is a particularly efficient and memory-saving data format to store abstract simplicial complexes, providing cheap algorithms to compute for example faces and cofaces of a given simplex. For more details we refer to the original publication by Boissonat and Maria 2012<ref>BOISSONNAT, Jean-Daniel; MARIA, Clément. The simplex tree: An efficient data structure for general simplicial complexes. In: ''European Symposium on Algorithms''. Springer, Berlin, Heidelberg, 2012. S. 731-742. [https://doi.org/10.1007/978-3-642-33090-2_63 doi:10.1007/978-3-642-33090-2_63]</ref>. | ||
== Computing persistent homology == | == Computing persistent homology == |
Revision as of 19:29, 5 May 2019
In this tutorial we will learn how to employ the C++ library GUDHI[1] (Geometric understanding in higher dimensions) in order to compute the Delaunay complex and alpha shapes of given point cloud data. For a more complete picture of GUDHI we refer to the project homepage and recommend reading the tutorials provided there.
This tutorial describes the numerics leading to results as in What is Topological Data Analysis? - A Primer.
Installation
Creating the example point cloud
The basis of any topological data analysis routine is a point cloud of data. For instance, the following lines of code generate [math]n[/math] points lying on a circle of radius [math]r[/math] with Gaussian noise of width [math]\sigma[/math] added on top:
Vector_of_points pts; std::random_device rd; // obtain a seed for the random number engine std::mt19937 gen(rd()); // mersenne_twister_engine seeded with rd() std::uniform_real_distribution<> dist_uniform(0.,2.*M_PI); std::normal_distribution<double> dist_normal(0.,sigma); double phase, x, y; for (long i=0; i<n; i++) { phase = dist_uniform(gen); x = r * cos(phase) + dist_normal(gen); y = r * sin(phase) + dist_normal(gen); pts.push_back(Point(x,y)); }
Generating alpha shapes
Using the GUDHI library, the following lines of code compute all alpha shapes of the point cloud pts
at once.
// Set maximum alpha radius to infinity, restoring the Delaunay complex in the limiting case double alpha_square_max_value {std::numeric_limits<double>::infinity()}; // Initialize the alpha complex of the point cloud Gudhi::alpha_complex::Alpha_complex<Kernel> alpha_complex_from_points(pts); // Initialize the corresponding simplex tree to store the complex Simplex_tree simplex_tree; // Create the complex alpha_complex_from_points.create_complex(simplex_tree, alpha_square_max_value)
A simplex tree is a particularly efficient and memory-saving data format to store abstract simplicial complexes, providing cheap algorithms to compute for example faces and cofaces of a given simplex. For more details we refer to the original publication by Boissonat and Maria 2012[2].
Computing persistent homology
The entire script
/* This script computes via GUDHI alpha shapes and persistent homology of points sampled from a circle with noise added Arguments to this program are: (1) Radius of the circle (2) Number of points to sample (3) Sigma of Gaussian noise For further information on the alpha shape construction functions employed, cf. e.g. http://gudhi.gforge.inria.fr/doc/latest/_alpha_complex_2alpha_complex_persistence_8cpp-example.html To compile use e.g.: g++ alpha_shapes.cpp -std=c++11 -lgmp -lCGAL -I /usr/local/include -I /usr/local/include/Eigen/ -lboost_system -I /home/daniel/Documents/2018-09-04-14-25-00_GUDHI_2.3.0/include -o alpha_shapes */ #define M_PI 3.14159265358979323846 #include <stdio.h> #include <math.h> #include <iostream> #include <fstream> #include <vector> #include <random> #include <limits> // for numeric limits #include <boost/program_options.hpp> #define CGAL_EIGEN3_ENABLED // auxiliary setting #include <CGAL/Epick_d.h> #include <gudhi/Alpha_complex.h> #include <gudhi/Persistent_cohomology.h> #include <gudhi/Simplex_tree.h> using Kernel = CGAL::Epick_d< CGAL::Dimension_tag<2> >; using Point = Kernel::Point_d; using Vector_of_points = std::vector<Point>; using Simplex_tree = Gudhi::Simplex_tree<>; using Filtration_value = Simplex_tree::Filtration_value; int main(int argc, char *argv[]) { // Get spherical point cloud parameters from input double r, sigma; long n; if (argc==4) { r = std::atof(argv[1]); n = std::atol(argv[2]); sigma = std::atof(argv[3]); } else { r = 1.; n = 100; sigma = 0.1; std::cout << "alpha_shapes.cpp main(): Using default input parameters..." << std::endl; } // Generate the circular point cloud with noise Vector_of_points pts; std::random_device rd; // obtain a seed for the random number engine std::mt19937 gen(rd()); // mersenne_twister_engine seeded with rd() std::uniform_real_distribution<> dist_uniform(0.,2.*M_PI); std::normal_distribution<double> dist_normal(0.,sigma); double phase, x, y; std::ofstream out_pts("pts.dat", std::ofstream::out); for (long i=0; i<n; i++) { phase = dist_uniform(gen); x = r * cos(phase) + dist_normal(gen); y = r * sin(phase) + dist_normal(gen); pts.push_back(Point(x,y)); out_pts << x << "\t" << y << std::endl; } out_pts.close(); // Set maximum alpha radius to infinity, restoring the Delaunay complex in the limiting case double alpha_square_max_value {std::numeric_limits<double>::infinity()}; // Initialize the alpha complex of the point cloud Gudhi::alpha_complex::Alpha_complex<Kernel> alpha_complex_from_points(pts); // Initialize the corresponding simplex tree to store the complex Simplex_tree simplex_tree; // Create the complex char name[1000]; if (alpha_complex_from_points.create_complex(simplex_tree, alpha_square_max_value)) { std::cout << "Alpha complex is of dimension " << simplex_tree.dimension() << " - " << simplex_tree.num_simplices() << " simplices - " << simplex_tree.num_vertices() << " vertices." << std::endl; // print complex to file for (int dim=0; dim<3; dim++) { sprintf(name, "cplx_dim_%d.dat", dim); std::ofstream out_cplx(name, std::ofstream::out); for (auto f_simplex : simplex_tree.filtration_simplex_range()) { if (simplex_tree.dimension(f_simplex) == dim) { for (auto vertex : simplex_tree.simplex_vertex_range(f_simplex)) { out_cplx << vertex << "\t"; } out_cplx << simplex_tree.filtration(f_simplex) << "\n"; } } out_cplx.close(); } } // Sort simplices in filtration order simplex_tree.initialize_filtration(); // Compute the persistence diagram of the complex int coeff_field_characteristic = 2; Gudhi::persistent_cohomology::Persistent_cohomology<Simplex_tree, Gudhi::persistent_cohomology::Field_Zp> pcoh(simplex_tree); Filtration_value min_persistence = 0.; pcoh.init_coefficients(coeff_field_characteristic); pcoh.compute_persistent_cohomology(min_persistence); // Print persistence diagram to file std::ofstream out_dgm("dgm.dat", std::ofstream::out); pcoh.output_diagram(out_dgm); out_dgm.close(); return 0; }
References
- ↑ http://gudhi.gforge.inria.fr/
- ↑ BOISSONNAT, Jean-Daniel; MARIA, Clément. The simplex tree: An efficient data structure for general simplicial complexes. In: European Symposium on Algorithms. Springer, Berlin, Heidelberg, 2012. S. 731-742. doi:10.1007/978-3-642-33090-2_63