Introductory reading

From STRUCTURES Wiki
Revision as of 21:06, 5 May 2019 by Dspitz (talk | contribs) (Readded references)
Jump to navigation Jump to search

This is a list of entries to the vastly growing literature in the field of topological data analysis, both from a theoretical and an applied point of view.

Literature for Mathematicians

A well-known theoretical introduction to the field. Carlsson: Topology and Data.[1]

One of the papers introducing the notion of persistent homology of a filtration. Zomorodian and Carlsson: Computing persistent homology.[2]

A recently introduced topological summary better suited than persistence diagrams to statistically analyze persistent homology, the persistence landscape. Bubenik: Statistical topological data analysis using persistence landscapes.[3]

Literature for Computer Scientists

A thorough introduction to the field and approaches of computational topology. Edelsbrunner and Harer: Computational topology: an introduction.[4]

A general overview of persistent homology with an eye towards applications of different numerical libraries. In the supplementaries starting points for own numerical steps are given. Otter et al: A roadmap for the computation of persistent homology.[5]

The mapper algorithm. Singh et al: Topological methods for the analysis of high dimensional data sets and 3d object recognition.[6]

Literature for Physicists

Starting with a topological primer, the computational setup is described and applied to immensely large structures present in our universe: the cosmic web. Pranav et al: The Topology of the Cosmic Web in Terms of Persistent Betti Numbers.[7]

Literature for Biologists

References

  1. CARLSSON, Gunnar. Topology and data. Bulletin of the American Mathematical Society, 2009, 46. Jg., Nr. 2, S. 255-308. doi:10.1090/S0273-0979-09-01249-X
  2. ZOMORODIAN, Afra; CARLSSON, Gunnar. Computing persistent homology. Discrete & Computational Geometry, 2005, 33. Jg., Nr. 2, S. 249-274. doi:10.1007/s00454-004-1146-y
  3. BUBENIK, Peter. Statistical topological data analysis using persistence landscapes. The Journal of Machine Learning Research, 2015, 16. Jg., Nr. 1, S. 77-102. http://www.jmlr.org/papers/volume16/bubenik15a/bubenik15a.pdf
  4. EDELSBRUNNER, Herbert; HARER, John. Computational topology: an introduction. American Mathematical Soc., 2010.
  5. OTTER, Nina, et al. A roadmap for the computation of persistent homology. EPJ Data Science, 2017, 6. Jg., Nr. 1, S. 17. doi:10.1140/epjds/s13688-017-0109-5
  6. SINGH, Gurjeet; MÉMOLI, Facundo; CARLSSON, Gunnar E. Topological methods for the analysis of high dimensional data sets and 3d object recognition. In: SPBG. 2007. S. 91-100. doi:10.2312/SPBG/SPBG07/091-100
  7. PRANAV, Pratyush, et al. The topology of the cosmic web in terms of persistent Betti numbers. Monthly Notices of the Royal Astronomical Society, 2016, 465. Jg., Nr. 4, S. 4281-4310. doi:10.1093/mnras/stw2862