Difference between revisions of "Template:NextTalk"

From STRUCTURES Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
 
  
 
<div style="text-align:center; line-height:1.3em; padding: 0px">
 
<div style="text-align:center; line-height:1.3em; padding: 0px">
  
 
+
<h4>
 +
Journal Club
 +
</h4>
 
<h3>
 
<h3>
<p>A model category of tame parametrised chain complexes <br>
+
[[Topological Methods in Data Analysis]] <br>
Barbara Giunti (University of Modena) </p>
+
Tue 16-18h, Zoom <br>
<p> Tue, July 7th, 16-18h <br>
+
organizers: Michael Bleher, Max Schmahl, Daniel Spitz
Zoom <small>([mailto:structures-hiwi@mathi.uni-heidelberg.de email us for details])</small><br> </p>
 
 
</h3>
 
</h3>
<div style="text-align:center">
+
 
<i>
 
<b>Abstract:</b> Persistent theory is a useful tool to extract information from real-world data sets, and profits of techniques from different mathematical disciplines, such as Morse theory and quiver representation. In this seminar, I am going to present a new approach for studying persistence theory using model categories. I will briefly introduce model categories and then describe how to define a model structure on the category of the tame parametrised chain complexes, which are chain complexes that evolve in time, describing why such an approach can be useful in topological data analysis. In particular, I will use the model category structure to retrieve two invariants that extract homotopical and homological information from any tame parametrised chain complex.
 
</i>
 
 
</div>
 
</div>
  
Line 22: Line 18:
  
  
 +
<!-- EXAMPLE
  
 +
<div style="text-align:center; line-height:1.3em; padding: 0px">
  
  
 
 
 
<!--
 
 
<h4>
 
Journal Club
 
</h4>
 
 
<h3>
 
<h3>
[[Topological Methods in Data Analysis]] <br>
+
<p>A model category of tame parametrised chain complexes <br>
Tue 16-18h, Zoom <br>
+
Barbara Giunti (University of Modena) </p>
Michael Bleher, Max Schmahl, Daniel Spitz
+
<p> Tue, July 7th, 16-18h <br>
 +
Zoom <small>([mailto:structures-hiwi@mathi.uni-heidelberg.de email us for details])</small><br> </p>
 
</h3>
 
</h3>
 
 
<div style="text-align:center">
 
<div style="text-align:center">
 
<i>
 
<i>
Abstract:  
+
<b>Abstract:</b> Persistent theory is a useful tool to extract information from real-world data sets, and profits of techniques from different mathematical disciplines, such as Morse theory and quiver representation. In this seminar, I am going to present a new approach for studying persistence theory using model categories. I will briefly introduce model categories and then describe how to define a model structure on the category of the tame parametrised chain complexes, which are chain complexes that evolve in time, describing why such an approach can be useful in topological data analysis. In particular, I will use the model category structure to retrieve two invariants that extract homotopical and homological information from any tame parametrised chain complex.
 
</i>
 
</i>
 
</div>
 
</div>
 +
 
-->
 
-->

Revision as of 11:42, 9 July 2020

Journal Club

Topological Methods in Data Analysis
Tue 16-18h, Zoom
organizers: Michael Bleher, Max Schmahl, Daniel Spitz