Difference between revisions of "Template:NextTalk"

From STRUCTURES Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<div style="text-align:center; line-height:1.3em; padding: 0px">
 
<div style="text-align:center; line-height:1.3em; padding: 0px">
<h4 style="margin:0px 0px 0.1em 0px;padding:0px">Workshop </h4>
+
<h4 style="margin:0px 0px 0.1em 0px;padding:0px">Summer School</h4>
 
<h3 style="margin:0px 0px 0px 0px;padding:0px 0px 0px 0px;line-height:1.3em;">
 
<h3 style="margin:0px 0px 0px 0px;padding:0px 0px 0px 0px;line-height:1.3em;">
Geometry, Topology, and Computation <br>
+
Persistent Homology and Barcodes
June 12 - 14
 
 
</h3>
 
</h3>
 
<div style="text-align:center; line-height:1.3em; padding: 0px 0px 1.8em 0px;">
 
<div style="text-align:center; line-height:1.3em; padding: 0px 0px 1.8em 0px;">
Heidelberg, Mathematikon <br>
+
August 5-9
Organizers: <i>Peter Albers, Roman Sauer, Anna Wienhard </i><br>
+
 
[https://sites.google.com/view/geometry-topology-computation website]
+
Schloß Rauischholzhausen <br>
 +
JLU Gießen
 +
 
 +
<i>Organizers: Peter Albers (Heidelberg), Leonid Polterovich (Tel Aviv), Kai Zehmisch (Gießen)</i>
 +
 
 +
[https://sites.google.com/view/persistenthomologyandbarcodes/ website]
 
</div>
 
</div>
  
<h4 style="margin:0px 0px 0.1em 0px;padding:0px">Stochastics Colloquium</h4>
 
<h3 style="margin:0px 0px 0px 0px;padding:0px 0px 0px 0px;line-height:1.3em;">
 
Object Oriented Data Analysis - Steve Marron* <br>
 
June 14, 15.00-16.00
 
</h3>
 
<div style="text-align:center; line-height:1.3em; padding: 0px;">
 
Mathematikon, Lecture Hall <br>
 
<font size="1">(*University of North Carolina) </font>
 
</div>
 
<div style="text-align:left;">
 
Abstract:
 
<i>
 
The rapid change in computational capabilities had made Big Data a major modern statistical challenge. Less well understood is the rise of Complex Data as a perhaps greater challenge. Object Oriented Data Analysis (OODA) is a framework for addressing this, in particular providing a general approach to the definition, representation, visualization and analysis of Complex Data. The notion of OODA generally guides data analysis, trough providing a useful terminology for interdisciplinary discussion of the many choices typically needed in modern complex data analyses. The main ideas are illustrated via a survey of a number of approaches which integrate differential geometry and Bayesian statistics, yielding powerful image segmentations.
 
</i>
 
</div>
 
 
</div>
 
</div>

Revision as of 20:25, 20 June 2019

Summer School

Persistent Homology and Barcodes

August 5-9

Schloß Rauischholzhausen
JLU Gießen

Organizers: Peter Albers (Heidelberg), Leonid Polterovich (Tel Aviv), Kai Zehmisch (Gießen)

website