Difference between revisions of "List of Software"

From STRUCTURES Wiki
Jump to navigation Jump to search
m
Line 8: Line 8:
 
* PHAT (https://github.com/blazs/phat)
 
* PHAT (https://github.com/blazs/phat)
 
* Dionysus (http://www.mrzv.org/software/dionysus)
 
* Dionysus (http://www.mrzv.org/software/dionysus)
* R-TDA (https://cran.r-project.org/web/packages/TDA/index.html)
+
* R-Package TDA (https://cran.r-project.org/web/packages/TDA/index.html)
* Persus (http://www.sas.upenn.edu/~vnanda/perseus/index.html)
+
* Perseus (http://www.sas.upenn.edu/~vnanda/perseus/index.html)
 
* Rivet (http://rivet.online/)
 
* Rivet (http://rivet.online/)
  
Line 32: Line 32:
 
=== Ripser ===
 
=== Ripser ===
 
=== PHAT ===
 
=== PHAT ===
 +
The basic design of the Persistent Homology Algorithms Toolbox (PHAT) is described in Bauer et al 2017<ref>BAUER, Ulrich, et al. Phat–persistent homology algorithms toolbox. ''Journal of symbolic computation'', 2017, 78. Jg., S. 76-90. [https://doi.org/10.1016/j.jsc.2016.03.008 doi:10.1016/j.jsc.2016.03.008]</ref>.
 +
 
=== Dionysus ===
 
=== Dionysus ===
=== R-TDA ===
+
=== R-Package TDA ===
=== Persus ===
+
The Package TDA provides an R interface for the algorithms of the C++ libraries GUDHI, Dionysus and PHAT. For an extensive reference manual and further information the reader may consult https://cran.r-project.org/web/packages/TDA/index.html.
 +
 
 +
=== Perseus ===
 +
The efficient Morse-theoretic algorithm to compute persistent homology implemented in Perseus has been descibed first in Mischaikow and Nanda 2013<ref>MISCHAIKOW, Konstantin; NANDA, Vidit. Morse theory for filtrations and efficient computation of persistent homology. ''Discrete & Computational Geometry'', 2013, 50. Jg., Nr. 2, S. 330-353. [https://doi.org/10.1007/s00454-013-9529-6 doi:10.1007/s00454-013-9529-6]</ref>. For details on the software we refer to http://www.sas.upenn.edu/~vnanda/perseus/index.html.
 +
 
 
=== Rivet ===
 
=== Rivet ===
  
 
== References ==
 
== References ==
 
<references />
 
<references />

Revision as of 21:06, 17 May 2019

In recent years, a whole landscape of software emerged that deals with computational topology tasks in different fashions. On this page, we provide starting points for the selection of software suited for the problem of interest.

Packages described here include the following:

This collection has been created without any claim of comprehensiveness.

Overview

Comparison of some of these packages e.g. by Otter et al. [1]. Eventually we will put put the results of this comparison in a table somewhere on this page.

Details

CGAL

The basic design of CGAL is described in Fabri et al 2000[2].

JavaPlex

The basic design of JavaPlex is described in Adams et al 2014[3]. We provide an introductory tutorial to Javaplex on a different page.

GUDHI

The basic design of GUDHI is described in Maria et al 2014[4]. We provide an introductory tutorial to using GUDHI on a different page.

Ripser

PHAT

The basic design of the Persistent Homology Algorithms Toolbox (PHAT) is described in Bauer et al 2017[5].

Dionysus

R-Package TDA

The Package TDA provides an R interface for the algorithms of the C++ libraries GUDHI, Dionysus and PHAT. For an extensive reference manual and further information the reader may consult https://cran.r-project.org/web/packages/TDA/index.html.

Perseus

The efficient Morse-theoretic algorithm to compute persistent homology implemented in Perseus has been descibed first in Mischaikow and Nanda 2013[6]. For details on the software we refer to http://www.sas.upenn.edu/~vnanda/perseus/index.html.

Rivet

References

  1. Otter, Nina, et al. A roadmap for the computation of persistent homology. EPJ Data Science, 2017, 6. Jg., Nr. 1, S. 17. doi:10.1140/epjds/s13688-017-0109-5
  2. FABRI, Andreas, et al. On the design of CGAL a computational geometry algorithms library. Software: Practice and Experience, 2000, 30. Jg., Nr. 11, S. 1167-1202. doi:10.1002/1097-024X(200009)30:11<1167::AID-SPE337>3.0.CO;2-B
  3. ADAMS, Henry; TAUSZ, Andrew; VEJDEMO-JOHANSSON, Mikael. JavaPlex: A research software package for persistent (co) homology. In: International Congress on Mathematical Software. Springer, Berlin, Heidelberg, 2014. S. 129-136. doi:10.1007/978-3-662-44199-2_23
  4. MARIA, Clément, et al. The gudhi library: Simplicial complexes and persistent homology. In: International Congress on Mathematical Software. Springer, Berlin, Heidelberg, 2014. S. 167-174. doi:10.1007/978-3-662-44199-2_28
  5. BAUER, Ulrich, et al. Phat–persistent homology algorithms toolbox. Journal of symbolic computation, 2017, 78. Jg., S. 76-90. doi:10.1016/j.jsc.2016.03.008
  6. MISCHAIKOW, Konstantin; NANDA, Vidit. Morse theory for filtrations and efficient computation of persistent homology. Discrete & Computational Geometry, 2013, 50. Jg., Nr. 2, S. 330-353. doi:10.1007/s00454-013-9529-6