Difference between revisions of "Template:NextTalk"

From STRUCTURES Wiki
Jump to navigation Jump to search
 
(36 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
 +
<!-- Workshop Example -->
 
<div style="text-align:center; line-height:1.3em; padding: 0px">
 
<div style="text-align:center; line-height:1.3em; padding: 0px">
 +
<h4>
 +
Seminar
 +
</h4>
 +
<h3>
 +
 +
[[Heidelberg TDA Seminar (Summer 2023)]]<br>
 +
Thu 11-13h, Mathematikon 00.200 <br>
 +
Lukas Hahn, Daniel Spitz
 +
</h3>
 +
</div>
 +
 +
 +
 +
 +
<!-- EXAMPLES
  
<h3>  
+
-- JOURNAL CLUB EXAMPLE --
The homology of Data <br>
+
<div style="text-align:center; line-height:1.3em; padding: 0px">
Nina Otter (UCLA)
+
<h4>
 +
Journal Club
 +
</h4>
 +
<h3>
 +
[[Heidelberg TDA Seminar (Summer 2022) | Heidelberg TDA Seminar (Summer 2022)]]<br>
 +
Thu 11h15-12h45, Mathematikon, SR 4 <br>
 +
Organizers: Lukas Hahn, Maximilian Schmahl, Daniel Spitz
 
</h3>
 
</h3>
<h4>  
+
</div>
14.04. - 17.04.2020 <br>
+
 
Physikalisches Institut, INF 226
+
-- SEMINAR EXAMPLE --
 +
 
 +
<h4>
 +
Seminar
 
</h4>
 
</h4>
 +
<h3>
 +
[https://stat.math.uni-heidelberg.de/courses_detail.php?id=118 Topologische Datenanalyse und persistente Homologie]<br>
 +
first meeting 13.04. or 21.04. <br>
 +
organizer: Dr. Johannes Krebs <br>
 +
please register in advance (until 09.04.2021)
 +
</h3>
 +
</div>
 +
 +
 +
-- SPECIAL TALK EXAMPLE --
 +
 +
<div style="text-align:center; line-height:1.3em; padding: 0px">
  
part of the [https://gsfp.physi.uni-heidelberg.de/graddays/| Heidelberg Physics Graduate Days]
+
 
 +
<h3>
 +
<p>A model category of tame parametrised chain complexes <br>
 +
Barbara Giunti (University of Modena) </p>
 +
<p> Tue, July 7th, 16-18h <br>
 +
Zoom <small>([mailto:structures-hiwi@mathi.uni-heidelberg.de email us for details])</small><br> </p>
 +
</h3>
 +
<div style="text-align:center">
 +
<i>
 +
<b>Abstract:</b> Persistent theory is a useful tool to extract information from real-world data sets, and profits of techniques from different mathematical disciplines, such as Morse theory and quiver representation. In this seminar, I am going to present a new approach for studying persistence theory using model categories. I will briefly introduce model categories and then describe how to define a model structure on the category of the tame parametrised chain complexes, which are chain complexes that evolve in time, describing why such an approach can be useful in topological data analysis. In particular, I will use the model category structure to retrieve two invariants that extract homotopical and homological information from any tame parametrised chain complex.
 +
</i>
 
</div>
 
</div>
  
<div style="text-align:left">
+
 
<b>Abstract</b>
+
-- WORKSHOP EXAMPLE --
 +
<div style="text-align:center; line-height:1.3em; padding: 0px">
 +
<h3>
 +
<p>2nd Workshop on <br>
 +
Topological Methods in Data Analysis<br>
 +
October 4th - 6th, Heidelberg University </p>
 +
</h3>
 +
<div style="text-align:center">
 
<i>
 
<i>
Techniques and ideas from topology - the mathematical area that studies shapes - are being applied to the study of data with increasing frequency and success.
+
<b>Abstract:</b>
 +
This three-day workshop includes introductions into the powerful data analysis machinery of persistent homology, extensive tutorials on the versatile GUDHI Library, and in particular features invited Colloquium Talks by well-known experts in the field, aimed at a broader audience. In addition, participants will have the opportunity to give a short presentation on their own TDA-related work.
 +
</i>
  
In this lecture series we will explore how we can use homology, a technique in topology that gives a measure of the number of holes of a space, to study data. The most well-known method of this type is persistent homology, in which one associates a one-parameter family of spaces to a data set and studies how the holes evolve across the parameter space. A more recent and less well-known technique is magnitude homology, which one can think of as giving a measure of the "effective number of points" of a metric space. In this course we will introduce the theoretical background for persistent and magnitude homology, and then dive into applications using software implementations and statistical analysis tools on real-world data sets.
+
[https://www.mathi.uni-heidelberg.de/~mbleher/tdaworkshop21.html Further information and registration.]
 +
</div>
 +
 
 +
 
 +
 
 +
<div style="text-align:center; line-height:1.3em; padding: 0px">
 +
<h3>
 +
<p>Python Course on <br>
 +
Topological Methods in Data Analysis<br>
 +
Heidelberg University </p>
 +
<p> October 26th - 28th <br>
 +
Mathematikon and Zoom <br> </p>
 +
</h3>
 +
<div style="text-align:center">
 +
<i>
 +
<b>Abstract:</b>
 +
In this twelve-hour workshop the participants will be introduced to the main techniques utilized in topological data analysis and their implementation provided by the python package scikit-tda. Introductions to the Mapper algorithm and persistent homology will be complemented by respective hands-on tutorial sessions. The workshop will conclude with an exploratory project of these methods on ‘real data’, which may be provided by the participants.
 
</i>
 
</i>
  
 +
More information on the [https://micbl.github.io/TDAworkshop/ course website]
 
</div>
 
</div>
 +
 +
-->

Latest revision as of 18:16, 17 April 2023

Seminar

Heidelberg TDA Seminar (Summer 2023)
Thu 11-13h, Mathematikon 00.200
Lukas Hahn, Daniel Spitz