Difference between revisions of "Introductory reading"

From STRUCTURES Wiki
Jump to navigation Jump to search
(Created page with "This is a list of entries to the literature. == Introductory material for Mathematicians == == Introductory material for Computer Scientists == Edelsbrunner, H., Harer, J....")
 
m
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
This is a list of entries to the literature.
+
This is a list of entries to the vastly growing literature in the field of topological data analysis, both from a theoretical and an applied point of view.
  
== Introductory material for Mathematicians ==
+
== Literature on theory ==
  
 +
A well-known theoretical introduction to the field. Carlsson: ''Topology and Data''.<ref>CARLSSON, Gunnar. Topology and data. ''Bulletin of the American Mathematical Society'', 2009, 46. Jg., Nr. 2, S. 255-308. [https://doi.org/10.1090/S0273-0979-09-01249-X doi:10.1090/S0273-0979-09-01249-X]</ref>
  
 +
One of the papers introducing the notion of persistent homology of a filtration. Zomorodian and Carlsson: ''Computing persistent homology''.<ref>ZOMORODIAN, Afra; CARLSSON, Gunnar. Computing persistent homology. ''Discrete & Computational Geometry'', 2005, 33. Jg., Nr. 2, S. 249-274. [https://doi.org/10.1007/s00454-004-1146-y doi:10.1007/s00454-004-1146-y]</ref>
  
== Introductory material for Computer Scientists ==
+
A recently introduced topological summary better suited than persistence diagrams to statistically analyze persistent homology, the persistence landscape. Bubenik: ''Statistical topological data analysis using persistence landscapes.''<ref>BUBENIK, Peter. Statistical topological data analysis using persistence landscapes. ''The Journal of Machine Learning Research'', 2015, 16. Jg., Nr. 1, S. 77-102. http://www.jmlr.org/papers/volume16/bubenik15a/bubenik15a.pdf</ref>
Edelsbrunner, H., Harer, J.: Computational topology: an introduction.
 
<ref>H. Edelsbrunner and J. Harer, ''Computational topology: an introduction''. Providence, R.I: American Mathematical Society, 2010.
 
  
<span class="Z3988" title="url_ver=Z39.88-2004&ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fzotero.org%3A2&rft_id=urn%3Aisbn%3A978-0-8218-4925-5&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Computational%20topology%3A%20an%20introduction&rft.place=Providence%2C%20R.I&rft.publisher=American%20Mathematical%20Society&rft.aufirst=Herbert&rft.aulast=Edelsbrunner&rft.au=Herbert%20Edelsbrunner&rft.au=J.%20Harer&rft.date=2010&rft.tpages=241&rft.isbn=978-0-8218-4925-5"></span>
+
== Literature towards applications ==
</ref>
+
A thorough introduction to the field and approaches of computational topology. Edelsbrunner and Harer: ''Computational topology: an introduction''.<ref>EDELSBRUNNER, Herbert; HARER, John. ''Computational topology: an introduction''. American Mathematical Soc., 2010. </ref>
  
 +
A general overview of persistent homology with an eye towards applications of different numerical libraries. In the supplementaries starting points for own numerical steps are given. Otter et al: ''A roadmap for the computation of persistent homology''.<ref>OTTER, Nina, et al. A roadmap for the computation of persistent homology. ''EPJ Data Science'', 2017, 6. Jg., Nr. 1, S. 17. [https://doi.org/10.1140/epjds/s13688-017-0109-5 doi:10.1140/epjds/s13688-017-0109-5]</ref>
  
== Introductory material for Physicists ==
+
The mapper algorithm. Singh et al: ''Topological methods for the analysis of high dimensional data sets and 3d object recognition.''<ref>SINGH, Gurjeet; MÉMOLI, Facundo; CARLSSON, Gunnar E. Topological methods for the analysis of high dimensional data sets and 3d object recognition. In: ''SPBG''. 2007. S. 91-100. [http://dx.doi.org/10.2312/SPBG/SPBG07/091-100 doi:10.2312/SPBG/SPBG07/091-100]</ref>
 
 
== Introductory material for Biologists ==
 
  
 
== References ==
 
== References ==
 
<references />
 
<references />

Latest revision as of 16:16, 20 May 2019

This is a list of entries to the vastly growing literature in the field of topological data analysis, both from a theoretical and an applied point of view.

Literature on theory

A well-known theoretical introduction to the field. Carlsson: Topology and Data.[1]

One of the papers introducing the notion of persistent homology of a filtration. Zomorodian and Carlsson: Computing persistent homology.[2]

A recently introduced topological summary better suited than persistence diagrams to statistically analyze persistent homology, the persistence landscape. Bubenik: Statistical topological data analysis using persistence landscapes.[3]

Literature towards applications

A thorough introduction to the field and approaches of computational topology. Edelsbrunner and Harer: Computational topology: an introduction.[4]

A general overview of persistent homology with an eye towards applications of different numerical libraries. In the supplementaries starting points for own numerical steps are given. Otter et al: A roadmap for the computation of persistent homology.[5]

The mapper algorithm. Singh et al: Topological methods for the analysis of high dimensional data sets and 3d object recognition.[6]

References

  1. CARLSSON, Gunnar. Topology and data. Bulletin of the American Mathematical Society, 2009, 46. Jg., Nr. 2, S. 255-308. doi:10.1090/S0273-0979-09-01249-X
  2. ZOMORODIAN, Afra; CARLSSON, Gunnar. Computing persistent homology. Discrete & Computational Geometry, 2005, 33. Jg., Nr. 2, S. 249-274. doi:10.1007/s00454-004-1146-y
  3. BUBENIK, Peter. Statistical topological data analysis using persistence landscapes. The Journal of Machine Learning Research, 2015, 16. Jg., Nr. 1, S. 77-102. http://www.jmlr.org/papers/volume16/bubenik15a/bubenik15a.pdf
  4. EDELSBRUNNER, Herbert; HARER, John. Computational topology: an introduction. American Mathematical Soc., 2010.
  5. OTTER, Nina, et al. A roadmap for the computation of persistent homology. EPJ Data Science, 2017, 6. Jg., Nr. 1, S. 17. doi:10.1140/epjds/s13688-017-0109-5
  6. SINGH, Gurjeet; MÉMOLI, Facundo; CARLSSON, Gunnar E. Topological methods for the analysis of high dimensional data sets and 3d object recognition. In: SPBG. 2007. S. 91-100. doi:10.2312/SPBG/SPBG07/091-100