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Organization I

I Each week, a presenter discusses on the basis of the named
paper(s) the given topic, taking into account further
references whenever necessary.

I The presenter may set a focus following his or her individual
interests.

I Interesting research applications from science will be
included whenever appropriate and put in between the other
talks.

I Each session begins Wednesdays at 9:15 am in
Mathematikon, SR9.



Organization II

I The precise schedule will be fixed a sufficient number of weeks
ahead and put online, cf.

https://wiki.structures.mathi.uni-heidelberg.de/

index.php/Topics_in_Topological_and_Geometric_

Methods_in_Data_Analysis

I Contacts:
Michael Bleher, mbleher@mathi.uni-heidelberg.de
Daniel Spitz, spitz@thphys.uni-heidelberg.de

https://wiki.structures.mathi.uni-heidelberg.de/index.php/Topics_in_Topological_and_Geometric_Methods_in_Data_Analysis
https://wiki.structures.mathi.uni-heidelberg.de/index.php/Topics_in_Topological_and_Geometric_Methods_in_Data_Analysis
https://wiki.structures.mathi.uni-heidelberg.de/index.php/Topics_in_Topological_and_Geometric_Methods_in_Data_Analysis
mbleher@mathi.uni-heidelberg.de
spitz@thphys.uni-heidelberg.de
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Tentative Schedule

Date Topic

16.10. Organizational Meeting

23.10. An Application of the Mapper Algorithm

30.10. Stability Theorems I

6.11. Stability Theorems II

13.11. Statistical Analysis of Persistence Diagrams

20.11. Persistent homology and dynamical quantum phenomena

27.11. Machine Learning and Topological Data Analysis

4.12.

11.12. Differential Calculus on Persistence Barcodes (probably)

18.12.

Christmas

8.01. Multiparameter Persistence
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The Mapper algorithm

Nicolau, Levine and Carlsson, PNAS 108(17), 2011
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Stability Theorems: Short Review of Persistence
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→
simplicial complex
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→
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Čr (P)
→

persistence module
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Data

P ⊂ RN
→

simplicial complex

Čr (P)

→
persistence module

H•(Čr (P))

In fact we get a filtered simplicial complex

Čr0(P)
i
↪→ Čr1(P)

Homology functor induces the structure of a persistence module

H•(Čr0(P))
i∗→ H•(Čr1(P))
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3. What can we deduce about the ”topology of the Data” from
its persistence module?

→ Reconstruction Theorems
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Stability Theorems I

Cohen-Steiner, Edelsbrunner and Harer, Discrete Comput. Geom.
37, 2007

Cohen-Steiner et al., Found. Comput. Math. 10, 2010



Stability Theorems II

Bauer and Lesnick, arXiv: 1610.10085v2, 2016
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Functional Summaries

Berry et al., arXiv: 1804.01618, 2018



Functional Summaries: Why?

Persistence diagrams are not easy objects to use in the machine
learning and statistical settings.

The goal: develop a unified framework for functional summaries
representing the persistence diagrams at hand in a statistically
more useful fashion.



Functional Summaries: Generalities

A functional summary of a persistence diagram is a map
F : D → F , F a collection of functions with compact domain T.
Random diagrams D1, . . . ,Dn become random functions
Fi := F(Di ).

Functional summaries generalize specific objects constructed from
persistence diagrams such as persistence landscapes.



Functional Summaries: Pointwise Convergence

Define e.g. mean functional summary,

F̄ (t) := E[Fi (t)], (1)

and the pointwise estimator

F̂ (t) :=
1

n

n∑
i=1

Fi (t). (2)

Prop. 1 (pointwise convergence). If F is uniformly bounded by
a constant Ū <∞ and im(F ) equicontinuous, then

sup
t∈T
|F̂ (t)− F̄ (t)| a.s.→ 0. (3)



Functional Summaries: asymptotic normal distributions

Prop. 2. Let σ2(t) := Var(Fi (t)) and σ2 :=
∫
σ2(t) dt. If F is

uniformly bounded by a constant Ū <∞, then

√
n(F̂ (t)− F̄ (t))

D→ N(0, σ2(t)), (4)
√
n

∫
(F̂ (t)− F̄ (t)) dt

D→ N(0, σ2(t)). (5)

...
Further propositions on the statistically “nice” behavior of
functional summaries include confidence bands and hypothesis
tests.
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Dynamical quantum phenomena: Background

Quantum systems far from equilibrium can exhibit effective loss of
details, followed by universal self-similar dynamics based on
nonthermal fixed points:

Source: Berges 2015

Research question: Can we extend the notion of universality far
from equilibrium beyond n-point correlation functions using TDA
techniques?



Dynamical quantum phenomena: Point Clouds
Construct point clouds as sublevel sets of the amplitude of
complex-valued quantum fields living on a lattice,

Xν(t) := |ψ(t, ·)|−1[0, ν] ⊂ ΛL. (6)

Examples:



Dynamical quantum phenomena: Self-similarity

Upon statistical analysis of the persistent homology of alpha
complexes: find self-similarity of a broad class of observables via
scaling of an asymptotic persistence pair distribution:

P̄
(
t, rb, rd

)
= (t/t ′)−η2 P̄

(
t ′, (t/t ′)−η1rb, (t/t

′)−η
′
1rd
)
. (7)

Allows for an intuitive explanation in terms of scaling species
mixing. η2 = 4η1 can be deduced from a packing argument.
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Machine Learning and TDA

Pun, Xia and Lee, arXiv: 1811.00252, 2018



Machine Learning and TDA: Generalities

The goal: build suitable machine learning models of persistence
diagrams to extract important information of topological features
in data.

Persistent homology-based machine learning techniques have
already been successful; a vast range of proposed models exists.
All share the problems of constructing meaningful metrics, kernels
and feature vectors.



Machine Learning and TDA: the Pipeline

Source: Pun, Xia and Lee 2018.



Machine Learning and TDA: the Paper

Is a review of persistent homology-based machine learning models.

Discusses its applications in protein structure classification,
benchmarking some of the models.

Delivers a systematical study of PH-based metrics, kernels and
feature vectors.
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Multiparameter Persistence

Let O be a partially ordered set, and µ ≤ λ ∈ O

Data

P ⊂ RN
→

O-filtered
simplicial complex

Cµ(P)
iµλ
↪→ Cλ(P)

→
multipersistence

module

Hµ
(iµλ)∗−→ Hλ

Need to revisit the 3 types of foundational results:

1. Classification of persistence modules?
→ not representable by barcodes!

2. How does the persistence module change for ”small
variations” of the Data and the choices we made?

→ wild behaviour occurs!

3. What can we deduce about the ”topology of the Data” from
its persistence module?

→ Reconstruction Theorems?



Multiparameter Persistence

E. Miller, arXiv: 1709.08155, 2017
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Distributing topics

Further interesting literature and content proposals are
welcome.

Who is interested in contributing?



Remarks

We are grateful for your participation and contributions.

Source: the Quanta Magazine
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