

Source: the Quanta Magazine

Topics in Topological and Geometric Methods in Data Analysis

Journal Club organized by Michael Bleher and Daniel Spitz

Opening session, the 16th of October 2019

Contents

Organization

Tentative Schedule

Contents

Organization

Tentative Schedule

- Each week, a presenter discusses on the basis of the named paper(s) the given topic, taking into account further references whenever necessary.
- The presenter may set a focus following his or her individual interests.
- Interesting research applications from science will be included whenever appropriate and put in between the other talks.
- Each session begins Wednesdays at 9:15 am in Mathematikon, SR9.

The precise schedule will be fixed a sufficient number of weeks ahead and **put online**, cf.

https://wiki.structures.mathi.uni-heidelberg.de/ index.php/Topics_in_Topological_and_Geometric_ Methods_in_Data_Analysis

Contacts:

Michael Bleher, mbleher@mathi.uni-heidelberg.de Daniel Spitz, spitz@thphys.uni-heidelberg.de

Contents

Organization

Tentative Schedule

Tentative Schedule

Date	Торіс
16.10.	Organizational Meeting
23.10.	An Application of the Mapper Algorithm
30.10.	Stability Theorems I
6.11.	Stability Theorems II
13.11.	Statistical Analysis of Persistence Diagrams
20.11.	Persistent homology and dynamical quantum phenomena
27.11.	Machine Learning and Topological Data Analysis
4.12.	
11.12.	Differential Calculus on Persistence Barcodes (probably)
18.12.	
6.11. 13.11. 20.11. 27.11. 4.12. 11.12. 18.12.	Stability Theorems II Statistical Analysis of Persistence Diagrams Persistent homology and dynamical quantum phenomena Machine Learning and Topological Data Analysis Differential Calculus on Persistence Barcodes (probably)

Christmas

8.01. Multiparameter Persistence

Inhalt

Organization

Tentative Schedule

Mapper

Stability Theorems Statistical Analysis of Persistence Diagrams

Persistent homology and dynamical quantum phenomena Machine Learning and Topological Data Analysis Multiparameter Persistence

Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival

Monica Nicolau^a, Arnold J. Levine^{b,1}, and Gunnar Carlsson^{a,c}

*Department of Mathematics, Stanford University, Stanford, CA 94305; ^bSchool of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540; and ^cAyasdi, Inc., Palo Alto, CA 94301

Contributed by Arnold J. Levine, February 25, 2011 (sent for review July 23, 2010)

Nicolau, Levine and Carlsson, PNAS 108(17), 2011

Inhalt

Organization

Tentative Schedule

Mapper

Stability Theorems

Statistical Analysis of Persistence Diagrams Persistent homology and dynamical quantum phenomena Machine Learning and Topological Data Analysis Multiparameter Persistence

Data $P \subset \mathbb{R}^N$

Data $P \subset \mathbb{R}^N$

Consider balls of radius r centered at the points in P

Data $P \subset \mathbb{R}^N$

Nerve construction yields a simplicial complex $\check{C}_r(P)$

 $egin{array}{ccc} \mathsf{Data} & \to & \mathsf{simplicial complex} \ \mathcal{P} \subset \mathbb{R}^N & \to & \check{C}_r(\mathcal{P}) \end{array}$

 $egin{array}{ccc} \mathsf{Data} & & \mathsf{simplicial complex} \ P \subset \mathbb{R}^N & & \check{C}_r(P) \end{array}$

In fact we get a filtered simplicial complex

 $\check{C}_{r_0}(P) \stackrel{i}{\hookrightarrow} \check{C}_{r_1}(P)$

 $egin{array}{ccc} \mathsf{Data} & \to & \mathsf{simplicial complex} \ P \subset \mathbb{R}^N & \to & \check{C}_r(P) \end{array}$

In fact we get a filtered simplicial complex

$$\check{C}_{r_0}(P) \stackrel{i}{\hookrightarrow} \check{C}_{r_1}(P)$$

Homology functor induces the structure of a persistence module

$$H_{\bullet}(\check{C}_{r_0}(P)) \xrightarrow{i_*} H_{\bullet}(\check{C}_{r_1}(P))$$

$$\begin{array}{cccc} \mathsf{Data} & \to & \mathsf{simplicial \ complex} & \to & \mathsf{persistence \ module} \\ P \subset \mathbb{R}^N & \to & \check{C}_r(P) & \to & H_{\bullet}(\check{C}_r(P)) \end{array}$$

$$\begin{array}{cccc} \mathsf{Data} & \to & \mathsf{simplicial\ complex} & \to & \mathsf{persistence\ module} \\ P \subset \mathbb{R}^N & \to & \check{C}_r(P) & \to & H_{\bullet}(\check{C}_r(P)) \end{array}$$

3 types of foundational results:

$$\begin{array}{cccc} \mathsf{Data} & \to & \mathsf{simplicial\ complex} & \to & \mathsf{persistence\ module} \\ P \subset \mathbb{R}^N & \to & \check{C}_r(P) & \to & H_{\bullet}(\check{C}_r(P)) \end{array}$$

- 3 types of foundational results:
 - 1. Classification of persistence modules? \rightarrow Structure Theorems (\leftrightarrow Barcodes!)

$$\begin{array}{cccc} \mathsf{Data} & \to & \mathsf{simplicial\ complex} \\ P \subset \mathbb{R}^N & \to & \check{C}_r(P) & \to & H_{\bullet}(\check{C}_r(P)) \end{array}$$

- 3 types of foundational results:
 - 1. Classification of persistence modules? \rightarrow **Structure Theorems** (\leftrightarrow Barcodes!)
 - How does the persistence module change for "small variations" of the Data and the choices we made?
 → Stability Theorems

$$\begin{array}{ccc} \mathsf{Data} & \to & \mathsf{simplicial\ complex} \\ P \subset \mathbb{R}^N & \to & \check{C}_r(P) & \to & H_{\bullet}(\check{C}_r(P)) \end{array}$$

- 3 types of foundational results:
 - 1. Classification of persistence modules? \rightarrow Structure Theorems (\leftrightarrow Barcodes!)
 - How does the persistence module change for "small variations" of the Data and the choices we made?
 → Stability Theorems
 - 3. What can we deduce about the "topology of the Data" from its persistence module?

\rightarrow Reconstruction Theorems

$$\begin{array}{cccc} \mathsf{Data} & \to & \mathsf{simplicial\ complex} \\ \mathsf{P} \subset \mathbb{R}^N & \to & \check{C}_r(\mathsf{P}) & \to & \mathsf{H}_{\bullet}(\check{C}_r(\mathsf{P})) \end{array}$$

- 3 types of foundational results:
 - 1. Classification of persistence modules? \rightarrow **Structure Theorems** (\leftrightarrow Barcodes!)
 - How does the persistence module change for "small variations" of the Data and the choices we made?
 → Stability Theorems
 - 3. What can we deduce about the "topology of the Data" from its persistence module?

ightarrow Reconstruction Theorems

Stability Theorems I

Stability of Persistence Diagrams *

David Cohen-Steiner Dept Computer Science Duke University, Durham North Carolina, USA dcohen@sophia.inria.fr Herbert Edelsbrunner Dept Computer Science Duke University, Durham Raindrop Geomagic, RTP North Carolina, USA edels@cs.duke.edu John Harer Dept Mathematics Duke University, Durham North Carolina, USA harer@math.duke.edu

Cohen-Steiner, Edelsbrunner and Harer, Discrete Comput. Geom. 37, 2007

Lipschitz Functions Have L_p-stable Persistence *

David Cohen-Steiner[†], Herbert Edelsbrunner[‡], John Harer[§] and Yuriy Mileyko[¶]

Cohen-Steiner et al., Found. Comput. Math. 10, 2010

Persistence Diagrams as Diagrams: A Categorification of the Stability Theorem

Ulrich Bauer*

Michael Lesnick[†]

March 19, 2019

Bauer and Lesnick, arXiv: 1610.10085v2, 2016

Inhalt

Organization

Tentative Schedule

Mapper Stability Theorems

Statistical Analysis of Persistence Diagrams

Persistent homology and dynamical quantum phenomena Machine Learning and Topological Data Analysis Multiparameter Persistence

Functional Summaries of Persistence Diagrams

Eric Berry · Yen-Chi Chen · Jessi Cisewski-Kehe · Brittany Terese Fasy

Berry et al., arXiv: 1804.01618, 2018

Persistence diagrams are not easy objects to use in the machine learning and statistical settings.

The goal: develop a unified framework for functional summaries representing the persistence diagrams at hand in a statistically more useful fashion.

A functional summary of a persistence diagram is a map $\mathbb{F} : \mathcal{D} \to \mathcal{F}, \mathcal{F}$ a collection of functions with compact domain \mathbb{T} . Random diagrams D_1, \ldots, D_n become random functions $F_i := \mathbb{F}(D_i)$.

Functional summaries generalize specific objects constructed from persistence diagrams such as persistence landscapes.

Functional Summaries: Pointwise Convergence

Define e.g. mean functional summary,

$$\bar{F}(t) := \mathbb{E}[F_i(t)], \tag{1}$$

and the pointwise estimator

$$\hat{F}(t) := \frac{1}{n} \sum_{i=1}^{n} F_i(t).$$
 (2)

Prop. 1 (pointwise convergence). If *F* is uniformly bounded by a constant $\overline{U} < \infty$ and $\operatorname{im}(F)$ equicontinuous, then

$$\sup_{t\in\mathbb{T}}|\hat{F}(t)-\bar{F}(t)|\stackrel{a.s.}{\to}0. \tag{3}$$

Prop. 2. Let $\sigma^2(t) := \operatorname{Var}(F_i(t))$ and $\sigma^2 := \int \sigma^2(t) dt$. If F is uniformly bounded by a constant $\overline{U} < \infty$, then

$$\sqrt{n}(\hat{F}(t) - \bar{F}(t)) \xrightarrow{D} N(0, \sigma^{2}(t)),$$
(4)
$$\sqrt{n} \int (\hat{F}(t) - \bar{F}(t)) dt \xrightarrow{D} N(0, \sigma^{2}(t)).$$
(5)

Further propositions on the statistically "nice" behavior of functional summaries include confidence bands and hypothesis tests.

. . .

Inhalt

Organization

Tentative Schedule

Mapper Stability Theorems Statistical Analysis of Persistence Diagrams Persistent homology and dynamical quantum phenomena Machine Learning and Topological Data Analysis Multiparameter Persistence

Dynamical quantum phenomena: Background

Quantum systems far from equilibrium can exhibit effective loss of details, followed by universal self-similar dynamics based on nonthermal fixed points:

Source: Berges 2015

Research question: Can we extend the notion of universality far from equilibrium beyond *n*-point correlation functions using TDA techniques?

Dynamical quantum phenomena: Point Clouds

Construct point clouds as sublevel sets of the amplitude of complex-valued quantum fields living on a lattice,

$$X_{\nu}(t) := |\psi(t, \cdot)|^{-1}[0, \nu] \subset \Lambda_L.$$
(6)

Examples:

Dynamical quantum phenomena: Self-similarity

Upon statistical analysis of the persistent homology of alpha complexes: find self-similarity of a broad class of observables via scaling of an asymptotic persistence pair distribution:

$$\bar{\mathcal{P}}(t, r_b, r_d) = (t/t')^{-\eta_2} \, \bar{\mathcal{P}}(t', (t/t')^{-\eta_1} r_b, (t/t')^{-\eta'_1} r_d).$$
(7)

Allows for an intuitive explanation in terms of scaling species mixing. $\eta_2 = 4\eta_1$ can be deduced from a packing argument.

Inhalt

Organization

Tentative Schedule

Mapper Stability Theorems Statistical Analysis of Persistence Diagrams Persistent homology and dynamical quantum phenomena Machine Learning and Topological Data Analysis Multiparameter Persistence

Machine Learning and TDA

Persistent-Homology-based Machine Learning and its Applications – A Survey

Chi Seng Pun^{*}

School of Physical and Mathematical Sciences Nanyang Technological Technology Singapore 637371

Kelin Xia*

School of Physical and Mathematical Sciences and School of Biological Sciences Nanyang Technological Technology Singapore 637371

Si Xian Lee

School of Physical and Mathematical Sciences Nanyang Technological Technology Singapore 637371 CSPUN@NTU.EDU.SG

XIAKELIN@NTU.EDU.SG

LEES0159@E.NTU.EDU.SG

Pun, Xia and Lee, arXiv: 1811.00252, 2018

The goal: build suitable machine learning models of persistence diagrams to extract important information of topological features in data.

Persistent homology-based machine learning techniques have already been successful; a vast range of proposed models exists. All share the problems of constructing meaningful metrics, kernels and feature vectors.

Machine Learning and TDA: the Pipeline

Is a review of persistent homology-based machine learning models.

Discusses its applications in protein structure classification, benchmarking some of the models.

Delivers a systematical study of PH-based metrics, kernels and feature vectors.

Inhalt

Organization

Tentative Schedule

Mapper Stability Theorems Statistical Analysis of Persistence Diagrams Persistent homology and dynamical quantum phenomena Machine Learning and Topological Data Analysis Multiparameter Persistence

Multiparameter Persistence

Let ${\mathcal O}$ be a partially ordered set, and $\mu \leq \lambda \in {\mathcal O}$

$$\begin{array}{ccc} \mathcal{O}\text{-filtered} & \text{multipersistence} \\ \text{Data} & \to & \text{simplicial complex} & \to & \text{module} \\ P \subset \mathbb{R}^N & \to & C_{\mu}(P) \stackrel{i_{\mu\lambda}}{\hookrightarrow} C_{\lambda}(P) & H_{\mu} \stackrel{(i_{\mu\lambda})_*}{\longrightarrow} H_{\lambda} \end{array}$$

Need to revisit the 3 types of foundational results:

- 1. Classification of persistence modules? \rightarrow not representable by barcodes!
- 2. How does the persistence module change for "small variations" of the Data and the choices we made? \rightarrow wild behaviour occurs!
- 3. What can we deduce about the "topology of the Data" from its persistence module?

 \rightarrow Reconstruction Theorems?

DATA STRUCTURES FOR REAL MULTIPARAMETER PERSISTENCE MODULES

EZRA MILLER

E. Miller, arXiv: 1709.08155, 2017

Tentative Schedule

Date	Торіс
16.10.	Organizational Meeting
23.10.	An Application of the Mapper Algorithm
30.10.	Stability Theorems I
6.11.	Stability Theorems II
13.11.	Statistical Analysis of Persistence Diagrams
20.11.	Persistent homology and dynamical quantum phenomena
27.11.	Machine Learning and Topological Data Analysis
4.12.	
11.12.	Differential Calculus on Persistence Barcodes (probably)
18.12.	

CHRISTMAS

8.01. Multiparameter Persistence

Contents

Organization

Tentative Schedule

Further interesting literature and content proposals are welcome.

Who is interested in contributing?

We are grateful for your participation and contributions.

Source: the Quanta Magazine