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1 Introduction

The aim of topological data analysis is primarily to somehow get to know the shape of a
set of data points lying in some metric space, like RN for N very big. There have been
developed several methods in the last decade to solve this problem. Persistent homology
for example analyses the homological signatures of point clouds to understand their geom-
etry. Another approach is to try to visualize the data or to find images attached to point
cloud data to obtain a qualitative understanding of the data through direct visualization
via for example a graph. Therefor Gurjeet Singh, Facundo Mémoli and Gunnar Carlsson
developed in 2007 the Mapper algorithm described in detail in [SMC07]. Together with
a so-called filter function Mapper produces (in its simplest version) a graph and thus
manages to obtain a one-dimensional picture of the data that yet provides information
on their topology. The key idea of Mapper is to identify local clusters within the point
cloud and understand the interaction of these partial clusters with each other.
In the first section this algorithm will be described in order to then in the second section
explain, how it was applied to breast cancer microarray gene expression data in 2010 by
Monica Nicolau, Arnold J. Levina and Gunnar Carlsson ([NLC11]) and how this appli-
cation of Mapper identified a subgroup of breast cancers that could not be found by just
doing Clustering.

2 Mapper

We are interested in finding topological properties of a topological space in a combinatorial
way, looking for example at an associated simplicial complex.

Definition 1 Given a finite covering U = {Uα}α∈A of a space X, we define the nerve of
the covering U to be the simplicial complex N (U) whose vertex set is the indexing set A,
and where a family {α0, α1, ..., αk} spans a k-simplex in N (U) if and only if Uα0 ∩ Uα1 ∩
... ∩ Uαk

6= ∅.

The Mapper construction is motivated by the following topological construction that
associates a simplicial complex to a topological space via a continuous function, improving
therefore the construction of taking the nerve of some covering:

Let X,Z be a topological spaces, f : X → Z a continuous function. From an finite open
covering U := {Uα}α∈A of Z we get, since f is continuous, an finite open covering of
X, namely {f−1(Uα)}α∈A. For each α consider now the decomposition of f−1(Uα)
into its path connected components and let U denote the covering of X by this path
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connected components obtained from the covering U of Z. Its nerve N (U) can now
be used to provide information about the topological space X.

Let now for the whole section X be a finite point cloud, and therefore discrete, endowed
with a metric d. The idea of Mapper is to now describe a method that transports this
construction from the setting of topological spaces to the setting of point clouds, where
the notion of ”connected components” does not make sense as we work with a discrete
set. It is replaced by clustering, which turns out to be the appropiate analogue. Mapper
does not place any conditions on the clustering algorithm, however the main example of
such an algorithm is the so-called single linkage clustering :

Definition 2 Fixing the value of a parameter ε > 0 one defines single linkage clustering,
the clustering algorithm that is used for Mapper, as follows: Two points x, x′ ∈ X belong
to the same cluster if and only if the they belong to the same equivalence class of the
equivalence relation generated by vε defined by x vε x′ :⇔ d(x, x′) ≤ ε.

Definition 3 The Mapper algorithm can now be defined, it can be implemented in five
steps:

1. Define the so-called filter functions, continuous functions f : X → Z into a reference
metric space Z which mainly is chosen to be Z = R

2. Select a covering U of Z

3. From the covering U = {Uα}α∈A contruct the subsets Xα := f−1(Uα) ⊆ X

4. Select a value ε > 0 and apply (single linkage) clustering with this parameter ε to
the sets Xα to obtain the set of clusters. We now have a covering of X parametrized
by pairs (α, c), where α ∈ A and c is one of the clusters of Xα

5. Construct the simplicial complex with vertex set consisting of the set of all possible
such pairs (α, c) and where {(α0, c0), ..., (αk, ck)} spans a k-simplex if and only if the
clusters c0, ..., ck have a point in common (cf. nerve of a covering).

A simplier version of Mapper, which is the one applied to the data in section 2, aims at
obtaining a graph. Therefor the covering U of Z is chosen so that at most two open sets
of U intersect. Alternatively, you can just reduce Step 5 of the algorithm to: Connect to
clusters by an edge if and only if the corresponding clusters have points in common. This
is actually the version of Mapper used in [NLC11].
The vertices of the obtained graph are often colored by the average value of the filter
function to get a more precise visualisation.
The following sketch visualizes the various steps of Mapper (the filter function used here
is just a projection/ height function):
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Remark 1 The implementation of Mapper depends on a lot of choices, like the filter
function f , the covering U , the distances notion d in X, the parameter ε or the selected
clustering algorithm.

G.Singh, F. Mémoli and G. Carlsson give some examples where Mapper was applied.
But it seems that one of the most significant applications of the algorithm was the one
described in [NLC11] in 2011 as it led to an important discovery in medicine which until
then could not have been detected using clustering.

3 Application to breast cancer microarray gene
expression data

In their paper Topology based data analysis identifies a subgroup of breast cancers with a
unique mutational profile and excellent survival M.Nicolau, A.J. Levine and G.Carlsson
introduce a method that extracts information from high-dimensional and very sparse
microarray data by using Progression Analysis of Disease (PAD) which is an application
of Mapper to transcriptionally genomic data, which are first transformed by so-called
Disease-Specific Genomic Analysis (DSGA). They found out that visualization of the
data via a graph has an advantage over clustering, since when the method was applied
to breast cancer transcriptional data they could identify a unique subgroup of so-called
Estrogen receptor positive (ER+) breast cancers, whose tumor cells have more Estrogen
receptors than healthy cells and therefore grow faster with Estrogen. This subgroup of
ER+ breast cancers has 100 % overall survival and no metastasis and forms a new subtype
of breast cancer that cluster analysis is unable to detect. It was called c−MYB+ breast
cancer due to its high levels of expression of the c−MYB gene.

3.1 Preliminary Mathematical tools

The mathematical method introduced in [NLC11] to unravel the geometry of the data
sets is the so-called Progression Analysis of Disease (PAD). It is an application of the
simple version of Mapper defined above to DSGA- transformed data. We will first define
what DSGA- tranformation means:

Definition 4 Disease-Specific Genomic Analysis (DSGA) transforms data from diseased

tissue as a sum of a normal component Nc.
−→
T , that mimics healthy tissue (obtained by

computing a Healthy State Model) and a disease component Dc.
−→
T , that measures error

or deviation from normal and are the data used later when applying Mapper. Let
−→
T be

the original tumor vector, then:

−→
T = Nc.

−→
T +Dc.

−→
T (1)

Definition 5 The input we want to analyze is a data matrix from diseased tissue, in which
the columns are patients and the rows are any genomic variable type, e.g. transcriptional
microarray data, like the data we will apply the algorithm to later.
Progression Analysis of Disease (PAD) can now be implemented in four steps:

1. DSGA-transform the data: Obtain a concatenated matrix out of the matrix Dc.mat
whose columns consist of the disease components of the original tumor vectors and
the matrix L1.mat whose columns estimate the disease component of normal tissue
(leave-one-out estimates of the deviation from healthy state by normal tissue data).
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2. Threshold the data coordinates so that only the genes showing significant deviation
from healthy state are retained the data matrix (with any appropriate test for sig-
nificance).

3. Define Mapper filter function for the columns of the DSGA-transformed data matrix

whose coordinates are the individual genes gi. Let
−→
V = (g1, ..., gs)

t be such a data
point. Then the filter function fp,k used is the vector magnitude in the Lp-norm, as
well as k powers of this magnitude:

fp,k(
−→
V ) = (

∑
|gi|p)

k
p (2)

4. Apply Mapper to the data obtained in step 2 using the filter functions fp,k. The
distance function used on the data is the correlation distance.

3.2 Application and Interpretation

The steps of PAD were applied to a breast cancer microarray gene expression data set.
The data consist of vectors in RN which represent numerically the levels of gene expres-
sion in the respective genome. Each coordinate belongs to a specific gene in the genome
of the tumor cell and describes how much mRNA is produced from the respective gene.
Step 1 and Step 2 produced a data matrix with 262 rows, which describe the expression
of the relevant genes. The values of the Mapper filter functions were then computed for
p = 1, ..., 5 and k = 1, ..., 10. Several graphs were thus obtained which had to be then
interpreted:
The figure below shows the resulting graph for p = 2 and k = 4. The local tumor cell
clusters have been colored with repect to their average value the filter function, i.e. the
color describes how much the gene expression of the respective diseased tissue deviates
from healthy gene expression. If the cluster is colored in blue, this means that we got a
low value of the filter function and thus gene expression is close to normal, whereas red
stands for a large value of the filter function and therefore a large deviation from normal
along multiple genes. This means, that many genes exhibit either increased or decreased
activity relative to normal. Sparse regions in the data tend to form loops in the graph.
The graph is composed of three branches representing different types of breast cancers:
The ER−-sequence, the ER+-sequence and the Normal-Like tissue, which is a subtype of
ER+-breast cancer. While the Normal-Like breast cancer subgroup was already known,
a new unknown subgroup could now be identified by obtaining this graph via Mapper :
A denser region of tumor clusters within the ER+-sequence which is flanked by areas
of sparse data. Due to its high levels of gene expression of special genes like c −MYB
it was denoted the c −MYB+ group. There is furthermore low activity in other gene
groups like innate inflammatory genes, relative to normal tissue. This extreme deviation
from normal molecular profiles and the 100% overall survival, that was found out after
doing PAD, suggest that the tumors of this new group have a mechanism to respond in a
protective way.
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Further, several biological analyses were done to the data to give evidence to the point
that c−MYB+ breast cancer is really a unique group, that does not fit into previously
identified breast cancer types, and warrants being identified as a breast cancer group:
As already mentioned above Survival analysis found out that the c−MYB+ group showed
100 % overall survival with no recurrence and no death from disease. This information
was not incorporated earlier in PAD. Molecular Subtype Classification analyzed that the
subgroup is not of one special molecular subtype. Prediction Analysis of Microarrays
revealed that the subgroup is distinct from normal tissue and the Normal-like group and
signicantly homogeneous as a class. Two predictor genes were able to distinguish between
the c −MYB+ group and normal tissue with error = 0. Significance of the Analysis of
Microarrays detected a set of genes that are signicantly different between the c−MYB+

group and normal samples or the c−MYB+ group and the rest of the ER+ sequence.
Furthermore, Cluster Analysis was also applied to the data set:

3.3 Comparison with Cluster Analysis Applied to the same data
matrix

Unlike the Normal-like tumor group, the new c−MYB+ tumor group is not visible when
just doing cluster analysis. The outputs of (average linkage) clustering were compared to
the Mapper results applied to the same exact DSGA-transformed data matrix to show
that the two procedures are different. The c −MYB+ tumors (marked in red/ orange
in the cluster dendrogram below) are scattered among different clusters, while PAD had
been able to extract this group that turned out to be statistically and biologically coherent:
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4 Conclusion

The c −MYB+ breast cancer group is a unique group that does not fit into previously
identifed breast cancer types, shows uniformity in molecular signature and clinical and
survival properties. It has also been validated in other breast cancer data sets.
The application and its result illustrate that TDA is particularly appropiate for the anal-
ysis of biological data. The viewpoint that it provides of these data is combinatorial and
thus easy to grasp. Also TDA has a degree of robustness to the sort of distortions that
can occur when studying biomedical data. Methods like Mapper are more sensitive than
cluster analysis in identifying the subtle geometry of (genomic) data and can therefore
uncover subgroups of diseases like the c−MYB+ breast cancer group.
As a remark one can note, that many choices, that are made when applying Mapper to
the data, seem to be kind of random and are not explained in [NLC11]. Nevertheless they
obtained an important result for cancer research by means of Mapper.
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