Multidimensional Persistence

Maximilian Neumann

15.01 .2020

Persistent homology captures the topology of a filtration - a one- parameter family of increasing spaces - in terms of a complete discrete invariant. This invariant is a multiset of intervals that denote the lifetimes of the topological entities within the filtration. In many applications of topology, it is necessary to study a multifiltration: A family of spaces parameterized along multiple geometric dimensions (see [CZ09, Abstract]). In this Article, we summarize and comment on the results of [CZ09]: That no similar complete discrete invariant exists for multidimensional persistence. Instead, [CZ09] proposes the rank invariant, a discrete invariant for the robust estimation of Betti numbers in a multifiltration, and proves its completeness in one dimension.

1. Prelimaries

Let k be a field and $A_{n}:=k\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring in n variables with the usual \mathbb{Z}^{n}-grading (or simply n-grading). k becomes a \mathbb{Z}^{n}-graded module via $k_{0}:=k$ and $k_{v}=0$ for $v \in \mathbb{Z}^{n} \backslash\{0\}$. For $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{Z}^{n}$, we define $x^{v}:=x_{1}^{v_{1}} \ldots . \cdot x_{n}^{v_{n}}$.

Definition 1.1 (Multiset). Let $S \subseteq \mathbb{Z}^{n}$ and $\mu: S \rightarrow \mathbb{N}$ be a map. $(S, \mu):=\{(s, i) \mid s \in S, i \leq$ $\mu(s)\} \subseteq S \times \mathbb{N}$ is called multiset.
Definition 1.2 (Quasiorder). For $S \subseteq \mathbb{Z}^{n},\left(s_{1}, \ldots, s_{n}\right),\left(t_{1}, \ldots, t_{n}\right) \in S$, define $\left(s_{1}, \ldots, s_{n}\right) \preceq$ $\left(t_{1}, \ldots, t_{n}\right)$ if and only if $s_{i} \leq t_{i}$ for all $i \in\{1, \ldots, n\}$. For $S \subseteq \mathbb{Z}^{n},(s, l),(t, k) \in(S, \mu)$ define $(s, l) \preceq(t, k)$ if and only if $s \preceq t$ for all $i \in\{1, \ldots, n\}$. Vec_{k} denotes the category of k-vector spaces with k-linear maps as morphisms.

Remark 1.3. For $S \subseteq \mathbb{N}_{0}^{n}$, \preceq defines a quasi-partial order on (S, μ).
Definition 1.4 (Persistence module). A persistence module is a functor $M: \mathcal{C} \rightarrow \operatorname{Vec}_{k}$ where \mathcal{C} is a small category.

1. M is called pointwise finite-dimensional if for all $v \in \mathcal{C} \operatorname{dim}_{k}\left(M_{v}\right)<\infty$.
2. M is called n-dimensional if $\mathcal{C}=\left(\mathbb{Z}^{n}, \preceq\right)$.

Denote Pers_{n} the category of n-dimensional pointwise finite dimensional persistence modules M with $M_{v}=0$ for all $v \in \mathbb{Z}_{\prec 0}^{n}$ and $M_{v}=M_{\delta}$ for all $v \preceq \delta$ for some $\delta \in \mathbb{N}_{0}^{n}, \operatorname{Grfin}\left(A_{n}\right)$ the category of finetly generated \mathbb{Z}^{n}-graded modules over A_{n} that are pointwise finite dimensional k-vector spaces and $\operatorname{Grfin}\left(A_{n}\right)_{\succeq 0} \subseteq \operatorname{Grfin}\left(A_{n}\right)$ the subcategory of objects that are positvely (≥ 0) graded.
Definition 1.5 ([CZ09], Def.2, Structure). Given $M \in \operatorname{Pers}_{n}$, we define a n-graded module over A_{n} by

$$
\alpha(M):=\bigoplus_{v \in \mathbb{Z}^{n}} M_{v}
$$

where the k-module structure is the direct sum structure and $M_{u} \rightarrow M_{v}$ is x^{v-u} for $u \preceq v$.
Theorem 1.6 ([CZ09], Thm.1, Correspondence). The correspondence α defines an euqivalence of categories between $\mathbf{P e r s}_{n}$ and $\operatorname{Grfin}\left(A_{n}\right)_{\succeq 0}$.

Theorem 1.7 ([CZ09],Thm. 2, refined). Let $k=\mathbb{F}_{p}$ for some prime p and let $M \in \operatorname{Grfin}\left(A_{n}\right) \preceq 0$. Then there is a multifiltered finite simplicial complex X such that $H_{l}(X, k) \cong M$ for all $l \geq 0$.

2. One-Dimensional Persistence

Let k be a field and $M \in \mathbf{P e r s}_{1}$, e.g. for $i \in \mathbb{N}_{0}\left(H^{i}\left(X_{j}, k\right)\right)_{j \in \mathbb{N}_{0}}$ the i-th homology of a bounded filtration $X_{0} \subseteq \ldots \subseteq X_{j}=X_{j+1}=X$. We obtain according to [ZC05]

$$
\operatorname{Pers}_{1} \ni M \longmapsto \alpha(M) \cong \bigoplus_{i=1}^{n} \Sigma^{\alpha_{i}} k[t] \bigoplus_{j=1}^{m} \Sigma^{\gamma_{j}} k[t] /\left(t^{n_{j}}\right) \longmapsto B(M) \in \mathbf{B a r}
$$

where the left isomorphism of finitely genereated graded $k[t]$-Modules is given by the standard Structure Theorem for Persistent Modules (Σ^{α} denotes an α-shift upwards in grading).

$$
B(M):=\bigcup_{i=1}^{n}\left\{\left(\left[\alpha_{i}, \infty\right), k_{i}\right) \mid 1 \leq k_{i} \leq \mu_{1}\left(\alpha_{i}\right)\right\} \cup \bigcup_{j=1}^{m}\left\{\left(\left[\lambda_{j}, \lambda_{j}+n_{j}\right), l_{j}\right) \mid 1 \leq l_{i} \leq \mu_{2}\left(\left(\lambda_{j}, n_{j}\right)\right)\right\}
$$

denotes the persistent barcode of M and Bar the category of Barcodes. The above assignments yields a complete classification (i.e. $B(M)=B(N)$ if and only if $N \cong M)$ for the one-dimnensional case. In the following we discuss the question if it is possible to obtain a complete classification for $M \in \operatorname{Pers}_{n}(k)$ with $n \geq 2$.

3. Multidimensional Persistence

3.1. Complete Classification

Definition 3.1 ([CZ09, §4.2], Shift, refined). Given a n-graded A_{n}-Module M and $v \in \mathbb{Z}^{n}$, the shifted n-graded A_{n}-module $M(v)$ is defined by $M(v)_{u}=M_{u-v}$ for all $u \in \mathbb{Z}^{n}$.

Definition 3.2 ([CZ09, §4.2], Type). Any n-graded k-vector space can be expressed as

$$
V \cong \mathcal{V}\left(\left(S_{V}, \mu_{V}\right)\right):=\bigoplus_{(v, i) \in\left(S_{V}, \mu_{V}\right)} k(v)
$$

for a suitable multiset $\left(S_{V}, \mu_{V}\right) . \xi(V):=\left(S_{V}, \mu_{V}\right)$ is called the type of V. Analoguously any free n-graded A_{n}-module F is isomorphic to

$$
F \cong \mathcal{F}\left(\left(S_{F}, \mu_{F}\right)\right):=\bigoplus_{(v, i) \in\left(S_{F}, \mu_{F}\right)} A_{n}(v)
$$

for a suitable finite multiset $\left(S_{F}, \mu_{F}\right) . \xi(F):=\left(S_{F}, \mu_{F}\right)$ is called the type of F.
Definition 3.3 ([CZ09, $\S 4.4$, Def.4], Free hull). For $M \in \operatorname{Grfin}\left(A_{n}\right)$, a free hull for M is a surjective homomorphism $p: F \rightarrow M$ of n-graded modules, where $F \in \operatorname{Grfin}\left(A_{n}\right)$ is free, such that

$$
i d_{k} \otimes_{A_{n}} p: k \otimes_{A_{n}} F \rightarrow k \otimes_{A_{n}} M
$$

is an isomorphism.

Theorem 3.4 ([CZ09, §4.4, Thm.7]). Every $M \in \operatorname{Grfin}\left(A_{n}\right)$ admits a free hull. Moreover, any two free hulls for M are isomorphic in the sense that if $p: F \rightarrow M$ and $p^{\prime}: F^{\prime} \rightarrow M$ are both free hulls, there exists an isomrphism $g: F \rightarrow F^{\prime}$ of n-graded modules s.t. the following diagram commutes:

Definition 3.5 ([CZ09, §4.5]). Let $M \in \operatorname{Grfin}\left(A_{n}\right)$ and $p: F \rightarrow M$ be a free Hull for M with $K:=\operatorname{Ker}(p)$. We define $\xi_{0}(M):=\xi\left(k \otimes_{A_{n}} M\right), \xi_{1}(M):=\xi\left(k \otimes_{A_{n}} K\right)$.
Theorem 3.6 ([CZ09, §4.5, Thm.8]). For $M \in \operatorname{Grfin}\left(A_{n}\right), \xi_{0}(M)$ and $\xi_{1}(M)$ are independent of the chosen free hull, hence they are a multiset-valued invariant of the isomorphism class of M.

Proof. For $\xi_{0}(M)$ the assertion follows from Theorem 3.4. Suppose that $p: F \rightarrow M$ and $p^{\prime}: F^{\prime} \rightarrow$ M are free hulls for M. By Theorem 3.4 there is an isomorphism $\phi: M \rightarrow M^{\prime}$ s.t. $p^{\prime} \circ \phi=p$ which implies $\operatorname{ker}(p) \cong \operatorname{ker}\left(p^{\prime}\right)$ via restricting and we get $\xi\left(k \otimes_{A_{n}} \operatorname{ker}(p)\right)=\xi\left(k \otimes_{A_{n}} \operatorname{ker}\left(p^{\prime}\right)\right)$.

Remark 3.7. For $M \in \operatorname{Pers}_{1}, \xi_{0}(M)$ and $\xi_{1}(M)$ correspond to the barcode $\mathrm{B}(M)$.
Remark 3.8. The Problem is that $\xi_{0}(M)$ and $\xi_{1}(M)$ are not complete for $M \in \mathbf{G r f i n}$. Consider $M_{1}=N_{1} / T_{1}$ and $M_{2}=N_{2} / T_{2}$ where

$$
\begin{aligned}
& N_{1}=N_{2}=A_{2} \oplus A_{2}, \\
& T_{1}=\left(x_{1}^{3}, x_{1}^{2} x_{2}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{2}^{3}\right) \oplus 0 \subseteq N_{1}, \\
& T_{2}=\left(x_{1}^{3}, x_{1}^{2} x_{2}\right) \oplus\left(x_{1} x_{2}^{2}, x_{2}^{3}\right) \subseteq N_{2} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\xi_{0}\left(M_{1}\right) & =\xi_{0}\left(M_{2}\right) \\
\xi_{1}\left(M_{1}\right) & =\xi_{1}\left(M_{2}\right)=\{((0,0), 1),((0,0), 2)\},
\end{aligned}
$$

but M_{1} and M_{2} are not isomorphic.
Denote $\mathcal{I}\left(\xi_{0}, \xi_{1}\right)$ the set of isomorphism classes $[M]$ of $M \in \operatorname{Grfin}\left(A_{n}\right)$ with $\xi_{0}=\xi_{0}(M)$ and $\xi_{1}=\xi_{1}(M)$. Denote $F=\mathcal{F}\left(\xi_{0}\right)$ the free finitely generated n-graded A_{n}-module over the multiset ξ_{0} and $\mathcal{S}\left(\xi_{0}, \xi_{1}\right)$ the set of all n-graded A_{n}-submodules $L \subseteq F$ which satisfy $\xi\left(k \otimes A_{n} L\right)=\xi_{1}$. $\operatorname{Aut}(F)$ acts on $\mathcal{S}\left(\xi_{0}, \xi_{1}\right)$ via $g \cdot L=g(L)$ for $g \in \operatorname{Aut}(F)$. We define a map

$$
q_{\xi_{0}, \xi_{1}}: \mathcal{S}\left(\xi_{0}, \xi_{1}\right) \longrightarrow \mathcal{I}\left(\xi_{0}, \xi_{1}\right), L \longmapsto[F / L]
$$

Remark 3.9. We need a condition that makes F the free hull of F / L which is not true in general. Otherwise, it would not be clear if the map $F \longmapsto[F / L]$ is well-defined. Consider for instance $L=A_{n}$ as submodule of $F=A_{n} \oplus A_{n}$ via embedding into the first component. Then we have $F / L \cong k$. After tensoring we get $k \otimes_{A_{n}} F \cong k^{2}$ and $k \otimes_{A_{n}} F / L \cong k$ which shows that F is not the free hull of F / L. A condition to fix the problem could be to assume that $\operatorname{id}_{k} \otimes_{A_{n}} i: k \otimes_{A_{n}} L \rightarrow k \otimes_{A_{n}} F$ is the zero map where $i: L \rightarrow F$ denotes the canonical inclusion.

Theorem 3.10 ([CZ09, §4.5, Thm.9], Classification). The map $q_{\xi_{0}, \xi_{1}}$ satisfies the formula $q_{\xi_{0}, \xi_{1}}(g$. $L)=q_{\xi_{0}, \xi_{1}}(L)$ and consequently induces a map

$$
\overline{q_{\xi_{0}, \xi_{1}}}: \mathcal{S}\left(\xi_{0}, \xi_{1}\right) / \operatorname{Aut}(F) \longrightarrow \mathcal{I}\left(\xi_{0}, \xi_{1}\right)
$$

where $\mathcal{S}\left(\xi_{0}, \xi_{1}\right) / \operatorname{Aut}(F):=\left\{\operatorname{Aut}(F) \cdot L \mid L \in \mathcal{S}\left(\xi_{0}, \xi_{1}\right)\right\}$ denotes the orbit space. Moreover, $\overline{q_{\xi_{0}, \xi_{1}}}$ is bijective.

Proof.

1. For $g \in \operatorname{Aut}(F)$ we have a commutative diagram

where \bar{g} is an isomorphism and thus $q_{\xi_{0}, \xi_{1}}(g \cdot L)=q_{\xi_{0}, \xi_{1}}(L)$.
2. For surjectivity it suffices to show that $q_{\xi_{0}, \xi_{1}}$ is surjective. Let $M \in \mathcal{I}\left(\xi_{0}, \xi_{1}\right)$. By Theorem 3.4 there exists a surjection $p: F \rightarrow M$. We have $\xi\left(k \otimes_{A_{n}} \operatorname{ker}(p)\right)=\xi_{1}(M)=\xi_{1}$ by assumption, thus $\operatorname{ker}(p) \in \mathcal{S}\left(\xi_{0}, \xi_{1}\right)$ and clearly $q_{\xi_{0}, \xi_{1}}(\operatorname{ker}(p)) \in \mathcal{I}\left(\xi_{0}, \xi_{1}\right)$ which shows surjectivity.
3. For injectivity, we suppose that we are given $L, L^{\prime} \in \mathcal{S}\left(\xi_{0}, \xi_{1}\right)$ with $q_{\xi_{0}, \xi_{1}}(L)=q_{\xi_{0}, \xi_{1}}\left(L^{\prime}\right)$, i.e. it exists an isomorphism $\alpha: F / L \rightarrow F / L^{\prime}$. By Theorem 3.4α lifts to $\widetilde{\alpha} \in \operatorname{Aut}(F)$ s.t.

commutes and therefore $L \cong_{\widetilde{\alpha}} L^{\prime}$.

What we have seen in this section is that $M \in \operatorname{Grfin}\left(A_{n}\right)$ is completely classified by $\xi_{0}(M)$, $\xi_{1}(M)$ and $\mathcal{Q}(M):={\overline{q_{0}(M), \xi_{1}(M)}}^{-1}(M)$, i.e. for $M, M^{\prime} \in \operatorname{Grfin}\left(A_{n}\right)$ holds $M \cong{ }_{\operatorname{Grfin}\left(A_{n}\right)} M^{\prime}$ if and only if $\xi_{0}(M)=\xi_{0}\left(M^{\prime}\right), \xi_{1}(M)=\xi_{1}\left(M^{\prime}\right)$ and $\mathcal{Q}(M)=\mathcal{Q}\left(M^{\prime}\right)$. The invariants $\xi_{0}(M)$ and $\xi_{1}(M)$ are discrete. Unfortunenately it turns out that $\mathcal{Q}(\cdot)$ yields a continouus and not a discrete invariant, which is shown in [CZ09, §5] by realizing $\mathcal{I}\left(\xi_{0}, \xi_{1}\right)$ as the orbit space of an algebraic group action.

3.2. Parametrization

In the following we summarize the results of [CZ09, §5]. The following definition is a refinement of the definition in [CZ09, §5.1] motivated by the extra condition which was necessary to make $q_{\xi_{0}, \xi_{1}}$ well defined, by Example 3.15 and the definition of relation families in ([CZ07, Def.9]) where [CZ07]) is an earlier and different version of [CZ09].

Definition 3.11 ([CZ09, §5.1], refined). Let $\xi_{0}=\left(V_{0}, \alpha_{0}\right), \xi_{1}=\left(V_{1}, \alpha_{1}\right)$ be finite multisets and $\delta: V_{1} \rightarrow \mathbb{Z}_{\geq 0}$ a map. $\mathbf{A R R}_{\xi_{1}, \delta}\left(F\left(\xi_{0}\right)\right)$ denotes the set of families $\left(L_{v}\right)_{v \in V_{1}}$ where $L_{v} \subseteq F\left(\xi_{0}\right)_{v}$ are k-linear such that for all $v \in V_{1}$:

1. $\operatorname{dim}_{k}\left(L_{v}\right)=\delta(v)$.
2. $\operatorname{dim}_{k}\left(L_{v} / \sum_{v^{\prime} \prec v} x^{v-v^{\prime}} L_{v^{\prime}}\right)=\alpha_{1}(v)$
3. $v^{\prime} \preceq v \Longrightarrow x^{v-v^{\prime}} L_{v^{\prime}} \subseteq L_{v}$.
4. $\operatorname{id}_{k} \otimes_{A_{n}} i: k \otimes_{A_{n}} L_{v} \rightarrow k \otimes_{A_{n}} F$ is the zero map where $i: L_{v} \rightarrow F$ denotes the canonical inclusion.

It remains to show if condition 4 . in Definition 3.12 is already contained in 1.-3. or not. In [CZ09, $\S 5.1]$ they claim a bijection between $\mathcal{S}\left(\xi_{0}, \xi_{1}\right)$ and $\mathbf{A R R}_{\xi_{1}, \delta}\left(F\left(\xi_{0}\right)\right)$ for certain δ. Adjusting the notions of $[\mathrm{CZO}, \S 8.3]$ to the situation in [CZ09] in order to get an analogous result I suggest the following:

Proposition 3.12. For $\xi_{0}=\left(V_{0}, \alpha_{0}\right)$, $\xi_{1}=\left(V_{1}, \alpha_{1}\right)$ finite mulitsets and $\delta=\operatorname{dim}_{k}\left(F\left(\xi_{1}\right)_{(\cdot)}\right)$, the following map is a bijection

$$
\begin{aligned}
\mathcal{S}\left(\xi_{0}, \xi_{1}\right) & \stackrel{\sim}{\longleftrightarrow} \mathbf{A R R}_{\xi_{1}, \delta}\left(F\left(\xi_{0}\right)\right), \\
L & \longmapsto\left(L_{v}\right)_{v \in V_{1}} \\
\sum_{v \in V_{1}}\left(L_{v}\right)_{A_{n}} & \longleftrightarrow\left(L_{v}\right)_{v \in V_{1}}
\end{aligned}
$$

Remark 3.13. The map in the above propostion is not given explicitly in [CZ09].
For a vectorspace W of dimension n denote $\mathbf{G r}_{d}(W):=\left\{U \subseteq W \mid \operatorname{dim}_{k}(U)=d\right\}$ the Grassmannian.

Theorem 3.14 ([CZ09, §5.1], Parametrization). $\mathbf{A R R}_{\xi_{1}, \delta}\left(F\left(\xi_{0}\right)\right)$ identifies with a subprevariety of the projective variety $\prod_{v \in V} \mathbf{G r}_{\delta(v)}\left(F_{v}\right)$ and in particular for $\delta=\operatorname{dim}_{k}\left(F\left(\xi_{1}\right)_{(\cdot)}\right), \mathcal{S}\left(\xi_{0}, \xi_{1}\right) \cong$ $\mathbf{A R R}_{\xi_{1}, \delta}\left(F\left(\xi_{0}\right)\right)$ becomes a prevariety in a natural way. Moreover, the group action

$$
\operatorname{Aut}(F) \curvearrowright \mathcal{S}\left(\xi_{0}, \xi_{1}\right)
$$

is an algebraic group action.
Proof. The basic idea in [CZ09, §5.1] is to interprete the (containment) conditions 1.-3. in Definition 3.11 algebraically. But the question that arises from Remark 3.9 is how to translate the additional condition which is necessary to make the assignment $L \rightarrow F / L$ well defined into an algebraic condition (if the condition is not optional in Definition 3.12). By [Thm.5]Carlsson2009 one can equip $\operatorname{Aut}(F)$ with an algebraic group structure.

Example 3.15 ([CZ09, §5.2], Continouus invariant, refined). Consider $M \in \operatorname{Grfin}\left(A_{n}\right)$ as in Remark 3.8 with

$$
\begin{aligned}
& \xi_{0}(M)=\{((0,0), 1),((0,0), 2)\} \\
& \xi_{1}(M)=\{((3,0), 1),((2,1), 1),((1,2), 1),((0,3), 1)\}
\end{aligned}
$$

We have $\operatorname{Aut}\left(\mathcal{F}\left(\xi_{0}\right)\right)=\mathrm{GL}_{2}(k)$ by [CZ09, Thm.5]. For each $(v, i) \in \xi_{1}$ we have $\mathcal{F}\left(\xi_{0}\right)_{v} \cong_{k} k^{2}$ and $\operatorname{dim}_{k}\left(\mathcal{F}\left(\xi_{1}\right)\right)=1$. One can easily check that the conditions 1.-4. in Definition 3.11 are trivial and hence

$$
\mathbf{A R R}_{\xi_{1}, \operatorname{dim}_{k}\left(F\left(\xi_{1}\right)_{(\cdot)}\right)}\left(F\left(\xi_{0}\right)\right)=\prod_{v \in V_{1}} \mathbf{G r}_{\operatorname{dim}_{k}\left(\mathcal{F}\left(\xi_{1}\right)_{v}\right)}\left(\mathcal{F}\left(\xi_{0}\right)_{v}\right)=\mathbf{G r}_{1}\left(k^{2}\right)^{4}=\mathbb{P}_{1}(k)^{4}
$$

and therefore

$$
\mathbb{P}_{1}(k)^{4} / \mathrm{GL}_{2}(k) \cong \mathcal{I}\left(\xi_{0}, \xi_{1}\right)
$$

Let $\Omega:=\left\{\left(l_{1}, l_{2}, l_{2}, l_{4}\right) \in \mathbb{P}_{1}(k)^{4} \mid l_{i} \neq l_{j}\right.$ for $\left.i \neq j\right\} \subseteq \mathbb{P}_{1}(k)^{4}$ denote the subspace of pairwise distinct lines. Ω is clearly $\mathrm{GL}_{2}(k)$ invariant and by [CZ09, §5.3] we get

$$
\mathbb{P}_{1}(k)^{4} / \mathrm{GL}_{2}(k) \supseteq \Omega / \mathrm{GL}_{2}(k)=\mathbb{P}_{1}(k) \backslash\{0,1, \infty\}=k \backslash\{0,1\}
$$

This shows the field dependency and if k is uncountable the continuous character of \mathcal{Q}.

3.3. The rank invariant

Definition 3.16 ([CZ09, §6, Def.5], $\left.\mathbb{D}^{n}\right)$. Let $\overline{\mathbb{N}}:=\mathbb{N} \cup\{\infty\}$ with $u \leq \infty$ for all $u \in \overline{\mathbb{N}}$. Let $\mathbb{D}^{n} \subseteq \mathbb{N}^{n} \times \overline{\mathbb{N}}^{n}$ be the subset above the diagonal, i.e. $\mathbb{D}^{n}=\left\{(u, v) \mid u \in \mathbb{N}^{n}, v \in \bar{N}^{n}, u \preceq v\right\}$. For $(u, v),\left(u^{\prime}, v^{\prime}\right) \in \mathbb{D}^{n}$, we define $(u, v) \preceq\left(u^{\prime}, v^{\prime}\right)$ if and only if $u \preceq u^{\prime}$ and $v \preceq v^{\prime}$.

Remark 3.17. (\mathbb{D}^{n}, \preceq) is a quasi-partially ordered set.
Definition 3.18 ([CZ09, §6, Def.6] Rank invariant $\left.\rho_{M}\right)$. Let $M \in \operatorname{Grfin}\left(A_{n}\right)$. We define

$$
\rho_{M}: \mathbb{D}^{n} \longrightarrow \mathbb{N},(u, v) \longmapsto \operatorname{rank}\left(x^{v-u}: M_{u} \rightarrow M_{v}\right)
$$

Remark 3.19. The function ρ_{M} is clearly a discrete invariant for $M \in \operatorname{Grfin}\left(A_{n}\right)$.
Lemma 3.20 ([CZ09, §6, Lem.7] Order-preserving). For all $(u, v),\left(u^{\prime}, v^{\prime}\right) \in \mathbb{D}^{n}$ it holds that $(u, v) \preceq\left(u^{\prime}, v^{\prime}\right)$ implies $\rho_{M}(u, v) \leq \rho_{M}\left(u^{\prime}, v^{\prime}\right)$. Therefore, ρ_{M} is an order-preserving function from $\left(\mathbb{D}^{n}, \preceq\right)$ to (\mathbb{N}, \leq).

Proof. We have $\operatorname{rank}(f \circ g) \leq \operatorname{rank}(f), \operatorname{rank}(g)$ for any linear transformations f, g.
Theorem 3.21 ([CZ09, §6, Thm.12]). The rank invariant ρ_{M} is complete for $M \in \operatorname{Grfin}\left(A_{1}\right)$.
Proof. The idea is to show that

$$
\Psi: \operatorname{Bar} \longrightarrow \mathbf{R a n k}, \Psi(\xi)(t, s):=\left\{\left(\left(t^{\prime}, s^{\prime}\right), i\right) \in \xi \mid(t, s) \subseteq\left(t^{\prime}, s^{\prime}\right)\right\}
$$

is a bijection between the set of Barcodes Bar and the set of rank invariants Rank.

References

[CZ07] Gunnar Carlsson and Afra Zomorodian. The theory of multidimensional persistence. Discrete and Computational Geometry, 42:71-93, 062007.
[CZ09] Gunnar Carlsson and Afra Zomorodian. The theory of multidimensional persistence. Discrete \mathcal{E} Computational Geometry, 42(1):71-93, Jul 2009.
[ZC05] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete Comput. Geom., 33(2):249-274, 2005.

