Multidimensional Persistence

Maximilian Neumann

15.01.2020

Persistent homology captures the topology of a filtration – a one- parameter family of increasing spaces – in terms of a complete discrete invariant. This invariant is a multiset of intervals that denote the lifetimes of the topological entities within the filtration. In many applications of topology, it is necessary to study a multifiltration: A family of spaces parameterized along multiple geometric dimensions (see [CZ09, Abstract]). In this Article, we summarize and comment on the results of [CZ09]: That no similar complete discrete invariant exists for multidimensional persistence. Instead, [CZ09] proposes the rank invariant, a discrete invariant for the robust estimation of Betti numbers in a multifiltration, and proves its completeness in one dimension.

1. Prelimaries

Let k be a field and $A_n := k[x_1, \ldots, x_n]$ the polynomial ring in n variables with the usual \mathbb{Z}^n -grading (or simply n-grading). k becomes a \mathbb{Z}^n -graded module via $k_0 := k$ and $k_v = 0$ for $v \in \mathbb{Z}^n \setminus \{0\}$. For $v = (v_1, \ldots, v_n) \in \mathbb{Z}^n$, we define $x^v := x_1^{v_1} \cdots x_n^{v_n}$.

Definition 1.1 (Multiset). Let $S \subseteq \mathbb{Z}^n$ and $\mu : S \to \mathbb{N}$ be a map. $(S, \mu) := \{(s, i) \mid s \in S, i \le \mu(s)\} \subseteq S \times \mathbb{N}$ is called multiset.

Definition 1.2 (Quasiorder). For $S \subseteq \mathbb{Z}^n$, $(s_1, ..., s_n), (t_1, ..., t_n) \in S$, define $(s_1, ..., s_n) \preceq (t_1, ..., t_n)$ if and only if $s_i \leq t_i$ for all $i \in \{1, ..., n\}$. For $S \subseteq \mathbb{Z}^n$, $(s, l), (t, k) \in (S, \mu)$ define $(s, l) \preceq (t, k)$ if and only if $s \preceq t$ for all $i \in \{1, ..., n\}$. Vec_k denotes the category of k-vector spaces with k-linear maps as morphisms.

Remark 1.3. For $S \subseteq \mathbb{N}_0^n$, \leq defines a quasi-partial order on (S, μ) .

Definition 1.4 (Persistence module). A persistence module is a functor $M : \mathcal{C} \to \mathbf{Vec}_k$ where \mathcal{C} is a small category.

- 1. *M* is called *pointwise finite-dimensional* if for all $v \in C \dim_k(M_v) < \infty$.
- 2. *M* is called *n*-dimensional if $\mathcal{C} = (\mathbb{Z}^n, \preceq)$.

Denote Pers_n the category of *n*-dimensional pointwise finite dimensional persistence modules M with $M_v = 0$ for all $v \in \mathbb{Z}^n_{\prec 0}$ and $M_v = M_\delta$ for all $v \preceq \delta$ for some $\delta \in \mathbb{N}^n_0$, $\operatorname{Grfin}(A_n)$ the category of finetly generated \mathbb{Z}^n -graded modules over A_n that are pointwise finite dimensional k-vector spaces and $\operatorname{Grfin}(A_n)_{\succeq 0} \subseteq \operatorname{Grfin}(A_n)$ the subcategory of objects that are positively (≥ 0) graded.

Definition 1.5 ([CZ09], Def.2, Structure). Given $M \in \mathbf{Pers}_n$, we define a *n*-graded module over A_n by

$$\alpha(M) := \bigoplus_{v \in \mathbb{Z}^n} M_v$$

where the k-module structure is the direct sum structure and $M_u \to M_v$ is x^{v-u} for $u \leq v$.

Theorem 1.6 ([CZ09], Thm.1, Correspondence). The correspondence α defines an euqivalence of categories between Pers_n and $\operatorname{Grfin}(A_n)_{\geq 0}$.

Theorem 1.7 ([CZ09],Thm. 2, refined). Let $k = \mathbb{F}_p$ for some prime p and let $M \in \mathbf{Grfin}(A_n)_{\leq 0}$. Then there is a multifiltered finite simplicial complex X such that $H_l(X,k) \cong M$ for all $l \geq 0$.

2. One-Dimensional Persistence

Let k be a field and $M \in \mathbf{Pers}_1$, e.g. for $i \in \mathbb{N}_0$ $(H^i(X_j, k))_{j \in \mathbb{N}_0}$ the *i*-th homology of a bounded filtration $X_0 \subseteq ... \subseteq X_j = X_{j+1} = X$. We obtain according to [ZC05]

$$\mathbf{Pers}_1 \ni M \longmapsto \alpha(M) \cong \bigoplus_{i=1}^n \Sigma^{\alpha_i} k[t] \bigoplus_{j=1}^m \Sigma^{\gamma_j} k[t] \Big/ (t^{n_j}) \longmapsto B(M) \in \mathbf{Bar}$$

where the left isomorphism of finitely generated graded k[t]-Modules is given by the standard Structure Theorem for Persistent Modules (Σ^{α} denotes an α -shift upwards in grading).

$$B(M) := \bigcup_{i=1}^{n} \{ ([\alpha_i, \infty), k_i) \mid 1 \le k_i \le \mu_1(\alpha_i) \} \cup \bigcup_{j=1}^{m} \{ ([\lambda_j, \lambda_j + n_j), l_j) \mid 1 \le l_i \le \mu_2((\lambda_j, n_j)) \}$$

denotes the *persistent barcode* of M and **Bar** the category of Barcodes. The above assignments yields a complete classification (i.e. B(M) = B(N) if and only if $N \cong M$) for the one-dimensional case. In the following we discuss the question if it is possible to obtain a complete classification for $M \in \mathbf{Pers}_n(k)$ with $n \ge 2$.

3. Multidimensional Persistence

3.1. Complete Classification

Definition 3.1 ([CZ09, §4.2], Shift, refined). Given a *n*-graded A_n -Module M and $v \in \mathbb{Z}^n$, the shifted *n*-graded A_n -module M(v) is defined by $M(v)_u = M_{u-v}$ for all $u \in \mathbb{Z}^n$.

Definition 3.2 ([CZ09, $\S4.2$], Type). Any *n*-graded *k*-vector space can be expressed as

$$V \cong \mathcal{V}((S_V, \mu_V)) := \bigoplus_{(v,i) \in (S_V, \mu_V)} k(v)$$

for a suitable multiset (S_V, μ_V) . $\xi(V) := (S_V, \mu_V)$ is called the *type* of V. Analoguously any free *n*-graded A_n -module F is isomorphic to

$$F \cong \mathcal{F}((S_F, \mu_F)) := \bigoplus_{(v,i) \in (S_F, \mu_F)} A_n(v)$$

for a suitable finite multiset (S_F, μ_F) . $\xi(F) := (S_F, \mu_F)$ is called the *type* of *F*.

Definition 3.3 ([CZ09, §4.4, Def.4], Free hull). For $M \in \mathbf{Grfin}(A_n)$, a free hull for M is a surjective homomorphism $p: F \to M$ of *n*-graded modules, where $F \in \mathbf{Grfin}(A_n)$ is free, such that

$$id_k \otimes_{A_n} p : k \otimes_{A_n} F \to k \otimes_{A_n} M$$

is an isomorphism.

Theorem 3.4 ([CZ09, §4.4, Thm.7]). Every $M \in \mathbf{Grfin}(A_n)$ admits a free hull. Moreover, any two free hulls for M are isomorphic in the sense that if $p: F \to M$ and $p': F' \to M$ are both free hulls, there exists an isomorphism $g: F \to F'$ of n-graded modules s.t. the following diagram commutes:

Definition 3.5 ([CZ09, §4.5]). Let $M \in \mathbf{Grfin}(A_n)$ and $p: F \to M$ be a free Hull for M with $K := \operatorname{Ker}(p)$. We define $\xi_0(M) := \xi(k \otimes_{A_n} M), \xi_1(M) := \xi(k \otimes_{A_n} K)$.

Theorem 3.6 ([CZ09, §4.5, Thm.8]). For $M \in \mathbf{Grfin}(A_n)$, $\xi_0(M)$ and $\xi_1(M)$ are independent of the chosen free hull, hence they are a multiset-valued invariant of the isomorphism class of M.

Proof. For $\xi_0(M)$ the assertion follows from Theorem 3.4. Suppose that $p: F \to M$ and $p': F' \to M$ are free hulls for M. By Theorem 3.4 there is an isomorphism $\phi: M \to M'$ s.t. $p' \circ \phi = p$ which implies $\ker(p) \cong \ker(p')$ via restricting and we get $\xi(k \otimes_{A_n} \ker(p)) = \xi(k \otimes_{A_n} \ker(p'))$. \Box

Remark 3.7. For $M \in \mathbf{Pers}_1$, $\xi_0(M)$ and $\xi_1(M)$ correspond to the barcode B(M).

Remark 3.8. The Problem is that $\xi_0(M)$ and $\xi_1(M)$ are not complete for $M \in \mathbf{Grfin}$. Consider $M_1 = \frac{N_1}{T_1}$ and $M_2 = \frac{N_2}{T_2}$ where

$$N_1 = N_2 = A_2 \oplus A_2,$$

$$T_1 = (x_1^3, x_1^2 x_2, x_1^2 x_2, x_1 x_2^2, x_2^3) \oplus 0 \subseteq N_1,$$

$$T_2 = (x_1^3, x_1^2 x_2) \oplus (x_1 x_2^2, x_2^3) \subseteq N_2.$$

Then we have

$$\begin{aligned} \xi_0(M_1) &= \xi_0(M_2) = \{((0,0),1), ((0,0),2)\}, \\ \xi_1(M_1) &= \xi_1(M_2) = \{((3,0),1), ((2,1),1), ((1,2),1), ((0,3),1)\} \end{aligned}$$

but M_1 and M_2 are not isomorphic.

Denote $\mathcal{I}(\xi_0, \xi_1)$ the set of isomorphism classes [M] of $M \in \mathbf{Grfin}(A_n)$ with $\xi_0 = \xi_0(M)$ and $\xi_1 = \xi_1(M)$. Denote $F = \mathcal{F}(\xi_0)$ the free finitely generated *n*-graded A_n -module over the multiset ξ_0 and $\mathcal{S}(\xi_0, \xi_1)$ the set of all *n*-graded A_n -submodules $L \subseteq F$ which satisfy $\xi(k \otimes_{A_n} L) = \xi_1$. Aut(F) acts on $\mathcal{S}(\xi_0, \xi_1)$ via $g \cdot L = g(L)$ for $g \in \mathrm{Aut}(F)$. We define a map

$$q_{\xi_0,\xi_1}: \mathcal{S}(\xi_0,\xi_1) \longrightarrow \mathcal{I}(\xi_0,\xi_1), \ L \longmapsto [F/L].$$

Remark 3.9. We need a condition that makes F the free hull of F/L which is not true in general. Otherwise, it would not be clear if the map $F \mapsto [F/L]$ is well-defined. Consider for instance $L = A_n$ as submodule of $F = A_n \oplus A_n$ via embedding into the first component. Then we have $F/L \cong k$. After tensoring we get $k \otimes_{A_n} F \cong k^2$ and $k \otimes_{A_n} F/L \cong k$ which shows that F is not the free hull of F/L. A condition to fix the problem could be to assume that $\operatorname{id}_k \otimes_{A_n} i : k \otimes_{A_n} L \to k \otimes_{A_n} F$ is the zero map where $i : L \to F$ denotes the canonical inclusion.

Theorem 3.10 ([CZ09, §4.5, Thm.9], Classification). The map q_{ξ_0,ξ_1} satisfies the formula $q_{\xi_0,\xi_1}(g \cdot L) = q_{\xi_0,\xi_1}(L)$ and consequently induces a map

$$\overline{q_{\xi_0,\xi_1}} : \mathcal{S}(\xi_0,\xi_1) / \operatorname{Aut}(F) \longrightarrow \mathcal{I}(\xi_0,\xi_1).$$

where $\mathcal{S}(\xi_0,\xi_1) / \operatorname{Aut}(F) := \{\operatorname{Aut}(F) \cdot L \mid L \in \mathcal{S}(\xi_0,\xi_1)\}$ denotes the orbit space. Moreover, $\overline{q_{\xi_0,\xi_1}}$ is bijective.

Proof.

1. For $g \in Aut(F)$ we have a commutative diagram

where \overline{g} is an isomorphism and thus $q_{\xi_0,\xi_1}(g \cdot L) = q_{\xi_0,\xi_1}(L)$.

- 2. For surjectivity it suffices to show that q_{ξ_0,ξ_1} is surjective. Let $M \in \mathcal{I}(\xi_0,\xi_1)$. By Theorem 3.4 there exists a surjection $p: F \to M$. We have $\xi(k \otimes_{A_n} \ker(p)) = \xi_1(M) = \xi_1$ by assumption, thus $\ker(p) \in \mathcal{S}(\xi_0,\xi_1)$ and clearly $q_{\xi_0,\xi_1}(\ker(p)) \in \mathcal{I}(\xi_0,\xi_1)$ which shows surjectivity.
- 3. For injectivity, we suppose that we are given $L, L' \in \mathcal{S}(\xi_0, \xi_1)$ with $q_{\xi_0,\xi_1}(L) = q_{\xi_0,\xi_1}(L')$, i.e. it exists an isomorphism $\alpha : F/L \to F/L'$. By Theorem 3.4 α lifts to $\tilde{\alpha} \in \operatorname{Aut}(F)$ s.t.

commutes and therefore $L \cong_{\widetilde{\alpha}} L'$.

What we have seen in this section is that $M \in \mathbf{Grfin}(A_n)$ is completely classified by $\xi_0(M)$, $\xi_1(M)$ and $\mathcal{Q}(M) := \overline{q_{\xi_0(M),\xi_1(M)}}^{-1}(M)$, i.e. for $M, M' \in \mathbf{Grfin}(A_n)$ holds $M \cong_{\mathbf{Grfin}(A_n)} M'$ if and only if $\xi_0(M) = \xi_0(M')$, $\xi_1(M) = \xi_1(M')$ and $\mathcal{Q}(M) = \mathcal{Q}(M')$. The invariants $\xi_0(M)$ and $\xi_1(M)$ are discrete. Unfortunenately it turns out that $\mathcal{Q}(\cdot)$ yields a continuous and not a discrete invariant, which is shown in [CZ09, §5] by realizing $\mathcal{I}(\xi_0, \xi_1)$ as the orbit space of an algebraic group action.

3.2. Parametrization

In the following we summarize the results of [CZ09, §5]. The following definition is a refinement of the definition in [CZ09, §5.1] motivated by the extra condition which was necessary to make q_{ξ_0,ξ_1} well defined, by Example 3.15 and the definition of relation families in ([CZ07, Def.9]) where [CZ07]) is an earlier and different version of [CZ09].

Definition 3.11 ([CZ09, §5.1], refined). Let $\xi_0 = (V_0, \alpha_0), \xi_1 = (V_1, \alpha_1)$ be finite multisets and $\delta : V_1 \to \mathbb{Z}_{\geq 0}$ a map. **ARR**_{\xi_1,\delta}(F(\xi_0)) denotes the set of families $(L_v)_{v \in V_1}$ where $L_v \subseteq F(\xi_0)_v$ are k-linear such that for all $v \in V_1$:

1. $\dim_k(L_v) = \delta(v).$ 2. $\dim_k\left(L_v \left/ \sum_{v' \prec v} x^{v-v'} L_{v'} \right) = \alpha_1(v)$ 3. $v' \prec v \Longrightarrow x^{v-v'} L_{v'} \subset L_v.$ 4. $\operatorname{id}_k \otimes_{A_n} i : k \otimes_{A_n} L_v \to k \otimes_{A_n} F$ is the zero map where $i : L_v \to F$ denotes the canonical inclusion.

It remains to show if condition 4. in Definition 3.12 is already contained in 1.-3. or not. In [CZ09, §5.1] they claim a bijection between $S(\xi_0, \xi_1)$ and $\mathbf{ARR}_{\xi_1,\delta}(F(\xi_0))$ for certain δ . Adjusting the notions of [CZ07, §8.3] to the situation in [CZ09] in order to get an analogous result I suggest the following:

Proposition 3.12. For $\xi_0 = (V_0, \alpha_0)$, $\xi_1 = (V_1, \alpha_1)$ finite mulitsets and $\delta = \dim_k (F(\xi_1)_{(\cdot)})$, the following map is a bijection

$$\mathcal{S}(\xi_0, \xi_1) \xrightarrow{\sim} \mathbf{ARR}_{\xi_1, \delta}(F(\xi_0))$$
$$L \longmapsto (L_v)_{v \in V_1}$$
$$\sum_{v \in V_1} (L_v)_{A_n} \longleftrightarrow (L_v)_{v \in V_1}$$

Remark 3.13. The map in the above proposition is not given explicitly in [CZ09].

For a vector space W of dimension n denote $\mathbf{Gr}_d(W) := \{U \subseteq W \mid \dim_k(U) = d\}$ the Grassmannian.

Theorem 3.14 ([CZ09, §5.1], Parametrization). $\operatorname{ARR}_{\xi_1,\delta}(F(\xi_0))$ identifies with a subprevariety of the projective variety $\prod_{v \in V} \operatorname{Gr}_{\delta(v)}(F_v)$ and in particular for $\delta = \dim_k (F(\xi_1)_{(\cdot)})$, $\mathcal{S}(\xi_0, \xi_1) \cong$ $\operatorname{ARR}_{\xi_1,\delta}(F(\xi_0))$ becomes a prevariety in a natural way. Moreover, the group action

$$\operatorname{Aut}(F) \curvearrowright \mathcal{S}(\xi_0, \xi_1)$$

is an algebraic group action.

Proof. The basic idea in [CZ09, §5.1] is to interpret the (containment) conditions 1.-3. in Definition 3.11 algebraically. But the question that arises from Remark 3.9 is how to translate the additional condition which is necessary to make the assignment $L \to F/L$ well defined into an algebraic condition (if the condition is not optional in Definition 3.12). By [Thm.5]Carlsson2009 one can equip Aut(F) with an algebraic group structure.

Example 3.15 ([CZ09, §5.2], Continuous invariant, refined). Consider $M \in \mathbf{Grfin}(A_n)$ as in Remark 3.8 with

$$\begin{aligned} \xi_0(M) &= \{ ((0,0),1), ((0,0),2) \} \\ \xi_1(M) &= \{ ((3,0),1), ((2,1),1), ((1,2),1), ((0,3),1) \} \end{aligned}$$

We have $\operatorname{Aut}(\mathcal{F}(\xi_0)) = \operatorname{GL}_2(k)$ by [CZ09, Thm.5]. For each $(v, i) \in \xi_1$ we have $\mathcal{F}(\xi_0)_v \cong_k k^2$ and $\dim_k(\mathcal{F}(\xi_1)) = 1$. One can easily check that the conditions 1.-4. in Definition 3.11 are trivial and hence

$$\mathbf{ARR}_{\xi_1, \dim_k(F(\xi_1)_{(\cdot)})}(F(\xi_0)) = \prod_{v \in V_1} \mathbf{Gr}_{\dim_k(\mathcal{F}(\xi_1)_v)}(\mathcal{F}(\xi_0)_v) = \mathbf{Gr}_1(k^2)^4 = \mathbb{P}_1(k)^4$$

and therefore

$$\mathbb{P}_1(k)^4 / \mathrm{GL}_2(k) \cong \mathcal{I}(\xi_0, \xi_1).$$

Let $\Omega := \{(l_1, l_2, l_2, l_4) \in \mathbb{P}_1(k)^4 \mid l_i \neq l_j \text{ for } i \neq j\} \subseteq \mathbb{P}_1(k)^4$ denote the subspace of pairwise distinct lines. Ω is clearly $\operatorname{GL}_2(k)$ invariant and by [CZ09, §5.3] we get

$$\mathbb{P}_1(k)^4 / \mathrm{GL}_2(k) \supseteq \Omega / \mathrm{GL}_2(k) = \mathbb{P}_1(k) \setminus \{0, 1, \infty\} = k \setminus \{0, 1\}.$$

This shows the field dependency and if k is uncountable the continuous character of Q.

3.3. The rank invariant

Definition 3.16 ([CZ09, §6, Def.5], \mathbb{D}^n). Let $\overline{\mathbb{N}} := \mathbb{N} \cup \{\infty\}$ with $u \leq \infty$ for all $u \in \overline{\mathbb{N}}$. Let $\mathbb{D}^n \subseteq \mathbb{N}^n \times \overline{\mathbb{N}}^n$ be the subset above the diagonal, i.e. $\mathbb{D}^n = \{(u, v) \mid u \in \mathbb{N}^n, v \in \overline{\mathbb{N}}^n, u \leq v\}$. For $(u, v), (u', v') \in \mathbb{D}^n$, we define $(u, v) \leq (u', v')$ if and only if $u \leq u'$ and $v \leq v'$.

Remark 3.17. (\mathbb{D}^n, \preceq) is a quasi-partially ordered set.

Definition 3.18 ([CZ09, §6, Def.6] Rank invariant ρ_M). Let $M \in \mathbf{Grfin}(A_n)$. We define

 $\rho_M : \mathbb{D}^n \longrightarrow \mathbb{N}, \ (u, v) \longmapsto \operatorname{rank}(x^{v-u} : M_u \to M_v)$

Remark 3.19. The function ρ_M is clearly a discrete invariant for $M \in \mathbf{Grfin}(A_n)$.

Lemma 3.20 ([CZ09, §6, Lem.7] Order-preserving). For all $(u, v), (u', v') \in \mathbb{D}^n$ it holds that $(u, v) \preceq (u', v')$ implies $\rho_M(u, v) \leq \rho_M(u', v')$. Therefore, ρ_M is an order-preserving function from (\mathbb{D}^n, \preceq) to (\mathbb{N}, \leq) .

Proof. We have $\operatorname{rank}(f \circ g) \leq \operatorname{rank}(f), \operatorname{rank}(g)$ for any linear transformations f, g.

Theorem 3.21 ([CZ09, §6, Thm.12]). The rank invariant ρ_M is complete for $M \in \mathbf{Grfin}(A_1)$.

Proof. The idea is to show that

$$\Psi: \mathbf{Bar} \longrightarrow \mathbf{Rank}, \ \Psi(\xi)(t,s) := \{ \left((t',s'), i \right) \in \xi \mid (t,s) \subseteq (t',s') \}$$

is a bijection between the set of Barcodes **Bar** and the set of rank invariants **Rank**.

References

- [CZ07] Gunnar Carlsson and Afra Zomorodian. The theory of multidimensional persistence. Discrete and Computational Geometry, 42:71–93, 06 2007.
- [CZ09] Gunnar Carlsson and Afra Zomorodian. The theory of multidimensional persistence. Discrete & Computational Geometry, 42(1):71–93, Jul 2009.
- [ZC05] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete Comput. Geom., 33(2):249–274, 2005.