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Persistent homology captures the topology of a filtration — a one- parameter family
of increasing spaces — in terms of a complete discrete invariant. This invariant is a
multiset of intervals that denote the lifetimes of the topological entities within the
filtration. In many applications of topology, it is necessary to study a multifiltration:
A family of spaces parameterized along multiple geometric dimensions (see [CZ09,
Abstract|). In this Article, we summarize and comment on the results of [CZ09|: That
no similar complete discrete invariant exists for multidimensional persistence. Instead,
|CZ09| proposes the rank invariant, a discrete invariant for the robust estimation of
Betti numbers in a multifiltration, and proves its completeness in one dimension.

1. Prelimaries

Let k be a field and A, := k[z1,...,x,] the polynomial ring in n variables with the usual
Z"-grading (or simply n-grading). k becomes a Z"-graded module via ko := k and k, = 0 for
v e Z"\{0}. For v = (v1,...,v,) € Z", we define ¥ := z{*-.. ..z}

Definition 1.1 (Multiset). Let S C Z™ and p: S — N be a map. (S,pu) :={(s,i) | s € S, i <
p(s)} € S x Nis called multiset.

Definition 1.2 (Quasiorder). For S C Z", (si1,...,8n), (t1,...,tn) € S, define (sy,...,5,) =<
(t1,...,tn) if and only if s; < t; for all i € {1,...,n}. For S C Z", (s,1),(t, k) € (S, u) define
(s,1) 2 (t,k) if and only if s < ¢ for all i € {1,...,n}. Vecy denotes the category of k-vector
spaces with k-linear maps as morphisms.

Remark 1.3. For S C Njj, < defines a quasi-partial order on (S, u).

Definition 1.4 (Persistence module). A persistence module is a functor M : C — Vecy, where C
is a small category.

1. M is called pointwise finite-dimensional if for all v € C dimy(M,) < oc.
2. M is called n-dimensional if C = (Z", <).

Denote Pers,, the category of n-dimensional pointwise finite dimensional persistence modules
M with M, = 0 for all v € Z"; and M, = M; for all v < ¢ for some § € Nj, Grfin(A,,) the
category of finetly generated Z™-graded modules over A, that are pointwise finite dimensional
k-vector spaces and Grfin(A,)-o C Grfin(A,,) the subcategory of objects that are positvely
(> 0) graded.

Definition 1.5 ([CZ09], Def.2, Structure). Given M € Pers,,, we define a n-graded module over
A, by

a(M) = P M,
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where the k-module structure is the direct sum structure and M, — M, is ™ for © < v.

Theorem 1.6 (|CZ09|, Thm.1, Correspondence). The correspondence o defines an eugqivalence
of categories between Pers,, and Grfin(A,)x-o.

Theorem 1.7 (|CZ09|,Thm. 2). Let k = F, for some prime p, M € Grfin(A4,)<o, | € Z>o.
Then there is a multifiltered finite simplicial complex X such that H)(X, k) = M.

2. One-Dimensional Persistence

Let k be a field and M € Persy, e.g. for i € Ny (H (X, k))jen, the i-th homology of a bounded
filtration Xo C ... € X; = X1 = X. We obtain according to [ZC05]

Pers; > M — a(M) = é Y k[t] é i k[t] /(tnj) — B(M) € Bar
i=1 j=1

where the left isomorphism of finitely genereated graded k[t]-Modules is given by the standard
Structure Theorem for Persistent Modules (X% denotes an a-shift upwards in grading).

n

B(M) = | J{([evi;00), ki) | 1 < ki < pa (i)} U (LN, A5 + ) 1) | 1< 0 < pna((Agmy))}
i=1 j=1

denotes the persistent barcode of M and Bar the category of Barcodes. The above assignments
yields a complete classification (i.e. B(M) = B(N) if and only if N 2 M) for the one-dimnensional
case. In the following we discuss the question if it is possible to obtain a complete classification
for M € Pers, (k) with n > 2.

3. Multidimensional Persistence

3.1. Complete Classification

Definition 3.1 (|CZ09, §4.2], Shift). Given a n-graded A,-Module M and v € Z", the shifted
n-graded A,-module M (v) is defined by M (v), = My, for all u € Z".

Definition 3.2 (|CZ09, §4.2|, Type). Any n-graded k-vector space can be expressed as
VEV((Sv,m) = @ k)
(v,i)€(Sv,pv)

for a suitable multiset (Sy, py). £(V) := (Sy, py) is called the type of V. Analoguously any free
n-graded A,-module F' is isomorphic to

F=F((Srpr) = B  Aul)
(v,9)€(SF,1F)

for a suitable finite multiset (Sg, ur). {(F) := (SF, pr) is called the type of F.

Definition 3.3 (|CZ09, §4.4, Def.4], Free hull). For M € Grfin(A,,), a free hull for M is a
surjective homomorphism p : F' — M of n-graded modules, where F' € Grfin(A,,) is free, such
that

1d @4, p: k®a, F = k4, M

is an isomorphism.



Theorem 3.4 (|CZ09, §4.4, Thm.7]). Every M € Grfin(A,) admits a free hull. Moreover, any
two free hulls for M are isomorphic in the sense that if p: F — M and p' : F' — M are both
free hulls, there exists an isomrphism g : F' — F' of n-graded modules s.t. the following diagram

= F
N
M

Definition 3.5 (|CZ09, §4.5]). Let M € Grfin(A4,,) and p : F' — M be a free Hull for M with
K := Ker(p). We define £y(M) :=&(k®a, M), &1(M) :=¢(k ®a4, K).

Theorem 3.6 ([CZ09, §4.5, Thm.8|). For M € Grfin(A,,), & (M) and & (M) are independent
of the chosen free hull, hence they are a multiset-valued invariant of the isomorphism class of M.

commutes:

F

Proof. For £y(M) the assertion follows from Theorem 3.4. Suppose that p: F — M and p' : F' —
M are free hulls for M. By Theorem 3.4 there is an isomorphism ¢ : M — M’ s.t. p’op =1p
which implies ker(p) = ker(p') via restricting and we get £(k ® 4, ker(p)) = £(k ®4,, ker(p')). O

Remark 3.7. { (M) and & (M) are discrete but not complete for M € Grfin. Consider for
instance My = N1 /7, and M, = N2 /7, where

Ny =Ny =A@ Ay,

T = (m?,x%mz,xlx%,xg) ®0C Ny,

T = (x“i’,x%azg) @ (xw%,:z%) C Nos.

Then we have

§o(My)
§1(My)

§o(Ma)
§1(Ma)

{((0,0),1),((0,0),2)},
{((3,0),1), ((2,1),1),((1,2), 1), ((0,3), 1)},

but M; and My are not isomorphic.

Denote Z(&p,&1) the set of isomorphism classes [M] of M € Grfin(4,,) with § = (M) and
&1 =& (M). Denote F' = F(&) the free finitely generated n-graded A,-module over the multiset
& and S(&o, 1) the set of all n-graded A,-submodules L C F' which satisfy £(k ®4, L) =& .
Aut(F) acts on S(&p,&1) via g - L = g(L) for g € Aut(F'). We define a map

Geoser S0, &) — T(&0. &), L— [F/L].

Remark 3.8. We need a condition that makes F the free hull of £/, which is not true in
general. Otherwise, it would not be clear if the map F' +— [F / L] is well-defined. Consider
for instance L = A, as submodule of F' = A,, & A,, via embedding into the first component.
Then we have £ /1, 2 k. After tensoring we get k ®a, F2k?>and k®4, F /1 = k which shows
that F is not the free hull of ¥ /7. A condition to fix the problem could be to assume that
id ®a,, 1:k®a, L = k®a, F is the zero map where ¢ : L — F' denotes the canonical inclusion.

Theorem 3.9 (|CZ09, §4.5, Thm.9|, Classification). The map q¢, ¢, satisfies the formula g, ¢, (-
L) = q¢ye, (L) and consequently induces a map

Gee - S0 &) [ Aut(F) — Z(6.&).

where S(€o,&1) /Aut(F) ={Aut(F)-L | L€ S(&,&)} denotes the orbit space. Moreover, g, ¢,

1s bijective.



Proof.

1. For g € Aut(F') we have a commutative diagram

F g Jj
Fjp——2—F [y

where g is an isomorphism and thus g¢, ¢, (9 - L) = geo.¢, (L).

2. For surjectivity it suffices to show that ge, ¢, is surjective. Let M € Z(&o,&1). By Theorem
3.4 there exists a surjection p : F' — M. We have {(k ®4, ker(p)) = & (M) = & by
assumption, thus ker(p) € S(&,&1) and clearly ge ¢, (ker(p)) € Z(&o,&1) which shows
surjectivity.

3. For injectivity, we suppose that we are given L,L" € S(§o,&1) with gg, ¢, (L) = gey.e, (L),
i.e. it exists an isomorphism a : '/, — F /7. By Theorem 3.4 « lifts to & € Aut(F) s.t.

Frr ~=F/p

~__ /

commutes and therefore L =5

O

What we have seen in this section is that M € Grfin(A,) is completely classified by (M),
&1(M) and Q(M) := Geyany e an) (M), ie. for M, M’ € Grfin(A,) holds M =g gn(a,) M’ if
and only if (M) = (M), &(M) = & (M') and Q(M) = Q(M’). The invariants &y(M) and
&1(M) are discrete. Unfortunenately it turns out that Q(-) yields a continouus and not a discrete
invariant, which is shown in [CZ09, §5| by realizing Z(§p,&1) as the orbit space of an algebraic
group action.

3.2. Parametrization

In the following we summarize the results of [CZ09, §5|. The following definition is a refinement
of the definition in [CZ09, §5.1] motivated by the extra condition which was necessary to make
¢o ¢, well defined, by Example 3.14 and the definition of relation families in (|[CZ07, Def.9]) where
[CZ07]) is an earlier and different version of [CZ09].

Definition 3.10 (|CZ09, §5.1| , refined). Let & = (Vb, o), &1 = (Vi, 1) be finite multisets and
d: Vi = Z>o a map. ARRg, 5(F(&)) denotes the set of families (L,)yev; where L, C F(&)y
are k-linear such that for all v € Vi:

1. dimg(Ly) = d(v).
2. dimy, (Lv / DO xv_”/Lv/) = a1(v)
3. v < v=>2""VL, C L.

4. idg ®4, 1 : k®4, Ly, = k®4a, F is the zero map where ¢ : L, — F denotes the canonical
inclusion.



It remains to show if condition 4. in Definition 3.11 is already contained in 1.-3. or not. In |[CZ09,
§5.1| they claim a bijection between S(&o,&;1) and ARRg, 5(F(§o)) for certain ¢. Adjusting the
notions of [CZ07, §8.3| to the situation in |[CZ09] in order to get an analogous result I suggest the
following:

Proposition 3.11. For & = (Vy, ap) , &1 = (Vi,an) finite mulitsets and § = dimy, (F(fl)(,)), the
following map is a bijection

S(&0,&1) — ARRg, 5(F (),
L+— (Lv)vEV1

Z (Lv)An A (Lv)veVl

veVy
Remark 3.12. The map in the above propostion is not given explicitly in [CZ09].

For a vectorspace W of dimension n denote Grg(W) := {U C W | dimy(U) = d} the Grassman-
nian.

Theorem 3.13 ([CZ09, §5.1], Parametrization). ARRg, 5(F(&o)) identifies with a subprevariety
of the projective variety [[,cy Grs) (Fy) and in particular for 6 = dimy, (F(El)(.)), S(&o, &) =
ARRg, 5(F(&o)) becomes a prevariety in a natural way. Moreover, the group action

Aut(F) ~ 8o, &1)

1 an algebraic group action.

Proof. The basic idea in [CZ09, §5.1] is to interprete the (containment) conditions 1.-3. in
Definition 3.10 algebraically. But the question that arises from Remark 3.8 is how to translate
the additional condition which is necessary to make the assignment L — £ /1, well defined into
an algebraic condition (if the condition is not optional in Definition 3.11). By [CZ09, Thm.5| one
can equip Aut(F') with an algebraic group structure. O

Example 3.14 (|CZ09, §5.2|, Continouus invariant, refined). Consider M € Grfin(4,,) as in
Remark 3.7 with

£O(M) &o :{((070)’1)7((070)72)}
§1(M) =& ={(3,0),1),((2,1),1),((1,2),1), ((0,3), 1)}
We have Aut(F(&)) = GLa(k) by [CZ09, Thm.5]. For each (v,4) € & we have F(&)y, = k? and

dimg(F(&1)y) = 1. One can easily check that the conditions 1.-4. in Definition 3.10 are trivial
and hence

ARR i (r(c)) F60) = [ Gram i (Fl&0)) = Gy () = Pa(4)*
veVy

and therefore

Py (k)% /GLg(k) = (€0, &1)-

Let Q = {(I1,l2,l2,14) € P1(k)* | l; # ljfori # j} C P1(k)* denote the subspace of pairwise
distinct lines. Q is clearly GLy(k) invariant and by [CZ09, §5.3] we get

Pi(k)! /GLy(k) 22 /GLa(k) = P1(k)\ {0, 1,00} = &\ {0, 1}

which shows the continuous character of Q if k£ is uncountable.



3.3. The rank invariant

Definition 3.15 (|CZ09, §6, Def.5], D"). Let N := N U {oo} with u < oo for all u € N. Let
D" C N* x N" be the subset above the diagonal, i.e. D" = {(u,v) | u € N*, v € N*, u < v}. For
(u,v), (u/,v") € D", we define (u,v) < (u/,v") if and only if v < ' and v < v'.

Remark 3.16. (D", <) is a quasi-partially ordered set.
Definition 3.17 (|CZ09, §6, Def.6] Rank invariant pys). Let M € Grfin(A4,). We define
pr D" — N (u,v) — rank(z"™" : M,, — M,)

Remark 3.18. The function pys is clearly a discrete invariant for M € Grfin(4,,).

Lemma 3.19 ([CZ09, §6, Lem.7| Order-preserving). For all (u,v), (u/,v") € D™ it holds that
(u,v) =2 (u',0") implies ppr(u,v) < par(u',v"). Therefore, pyr is an order-preserving function from

(D", %) to (N, ).
Proof. We have rank(f o g) < rank(f),rank(g) for any linear transformations f,g. O]
Theorem 3.20 ([CZ09, §6, Thm.12|). The rank invariant ppsr is complete for M € Grfin(A;).
Proof. The idea is to show that

U : Bar — Rank, ¥(¢)(t,s) := {((t',s),1) € & | (t,s) C (¢, )}

is a bijection between the set of Barcodes Bar and the set of rank invariants Rank. O
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