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Persistent homology captures the topology of a filtration – a one- parameter family
of increasing spaces – in terms of a complete discrete invariant. This invariant is a
multiset of intervals that denote the lifetimes of the topological entities within the
filtration. In many applications of topology, it is necessary to study a multifiltration:
A family of spaces parameterized along multiple geometric dimensions (see [CZ09,
Abstract]). In this Article, we summarize and comment on the results of [CZ09]: That
no similar complete discrete invariant exists for multidimensional persistence. Instead,
[CZ09] proposes the rank invariant, a discrete invariant for the robust estimation of
Betti numbers in a multifiltration, and proves its completeness in one dimension.

1. Prelimaries

Let k be a field and An := k[x1, . . . , xn] the polynomial ring in n variables with the usual
Zn-grading (or simply n-grading). k becomes a Zn-graded module via k0 := k and kv = 0 for
v ∈ Zn \ {0}. For v = (v1, . . . , vn) ∈ Zn, we define xv := xv11 ·. . .·xvnn .

Definition 1.1 (Multiset). Let S ⊆ Zn and µ : S → N be a map. (S, µ) := {(s, i) | s ∈ S, i ≤
µ(s)} ⊆ S × N is called multiset.

Definition 1.2 (Quasiorder). For S ⊆ Zn, (s1, ..., sn), (t1, ..., tn) ∈ S, define (s1, ..., sn) �
(t1, ..., tn) if and only if si ≤ ti for all i ∈ {1, ..., n}. For S ⊆ Zn, (s, l), (t, k) ∈ (S, µ) define
(s, l) � (t, k) if and only if s � t for all i ∈ {1, ..., n}. Veck denotes the category of k-vector
spaces with k-linear maps as morphisms.

Remark 1.3. For S ⊆ Nn0 , � defines a quasi-partial order on (S, µ).

Definition 1.4 (Persistence module). A persistence module is a functor M : C → Veck where C
is a small category.

1. M is called pointwise finite-dimensional if for all v ∈ C dimk(Mv) <∞.

2. M is called n-dimensional if C = (Zn,�).

Denote Persn the category of n-dimensional pointwise finite dimensional persistence modules
M with Mv = 0 for all v ∈ Zn≺0 and Mv = Mδ for all v � δ for some δ ∈ Nn0 , Grfin(An) the
category of finetly generated Zn-graded modules over An that are pointwise finite dimensional
k-vector spaces and Grfin(An)�0 ⊆ Grfin(An) the subcategory of objects that are positvely
(≥ 0) graded.

Definition 1.5 ([CZ09], Def.2, Structure). Given M ∈ Persn, we define a n-graded module over
An by

α(M) :=
⊕
v∈Zn

Mv
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where the k-module structure is the direct sum structure and Mu →Mv is xv−u for u � v.

Theorem 1.6 ([CZ09], Thm.1, Correspondence). The correspondence α defines an euqivalence
of categories between Persn and Grfin(An)�0.

Theorem 1.7 ([CZ09],Thm. 2). Let k = Fp for some prime p, M ∈ Grfin(An)�0, l ∈ Z≥0.
Then there is a multifiltered finite simplicial complex X such that Hl(X, k) ∼= M .

2. One-Dimensional Persistence

Let k be a field and M ∈ Pers1, e.g. for i ∈ N0 (H i(Xj , k))j∈N0 the i-th homology of a bounded
filtration X0 ⊆ ... ⊆ Xj = Xj+1 = X. We obtain according to [ZC05]

Pers1 3M 7−→ α(M) ∼=
n⊕
i=1

Σαik[t]
m⊕
j=1

Σγjk[t]
/

(tnj ) 7−→ B(M) ∈ Bar

where the left isomorphism of finitely genereated graded k[t]-Modules is given by the standard
Structure Theorem for Persistent Modules (Σα denotes an α-shift upwards in grading).

B(M) :=

n⋃
i=1

{([αi,∞), ki) | 1 ≤ ki ≤ µ1(αi)} ∪
m⋃
j=1

{([λj , λj + nj), lj) | 1 ≤ li ≤ µ2((λj , nj))}

denotes the persistent barcode of M and Bar the category of Barcodes. The above assignments
yields a complete classification (i.e. B(M) = B(N) if and only if N ∼= M) for the one-dimnensional
case. In the following we discuss the question if it is possible to obtain a complete classification
for M ∈ Persn(k) with n ≥ 2.

3. Multidimensional Persistence

3.1. Complete Classification

Definition 3.1 ([CZ09, §4.2], Shift). Given a n-graded An-Module M and v ∈ Zn, the shifted
n-graded An-module M(v) is defined by M(v)u = Mu−v for all u ∈ Zn.

Definition 3.2 ([CZ09, §4.2], Type). Any n-graded k-vector space can be expressed as

V ∼= V((SV , µV )) :=
⊕

(v,i)∈(SV ,µV )

k(v)

for a suitable multiset (SV , µV ). ξ(V ) := (SV , µV ) is called the type of V . Analoguously any free
n-graded An-module F is isomorphic to

F ∼= F((SF , µF )) :=
⊕

(v,i)∈(SF ,µF )

An(v)

for a suitable finite multiset (SF , µF ). ξ(F ) := (SF , µF ) is called the type of F .

Definition 3.3 ([CZ09, §4.4, Def.4], Free hull). For M ∈ Grfin(An), a free hull for M is a
surjective homomorphism p : F →M of n-graded modules, where F ∈ Grfin(An) is free, such
that

idk ⊗An p : k ⊗An F → k ⊗An M

is an isomorphism.
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Theorem 3.4 ([CZ09, §4.4, Thm.7]). Every M ∈ Grfin(An) admits a free hull. Moreover, any
two free hulls for M are isomorphic in the sense that if p : F → M and p′ : F ′ → M are both
free hulls, there exists an isomrphism g : F → F ′ of n-graded modules s.t. the following diagram
commutes:

F
g

∼
//

p   

F ′

p′~~
M

Definition 3.5 ([CZ09, §4.5]). Let M ∈ Grfin(An) and p : F →M be a free Hull for M with
K := Ker(p). We define ξ0(M) := ξ(k ⊗An M), ξ1(M) := ξ(k ⊗An K).

Theorem 3.6 ([CZ09, §4.5, Thm.8]). For M ∈ Grfin(An), ξ0(M) and ξ1(M) are independent
of the chosen free hull, hence they are a multiset-valued invariant of the isomorphism class of M.

Proof. For ξ0(M) the assertion follows from Theorem 3.4. Suppose that p : F →M and p′ : F ′ →
M are free hulls for M . By Theorem 3.4 there is an isomorphism φ : M → M ′ s.t. p′ ◦ φ = p
which implies ker(p) ∼= ker(p′) via restricting and we get ξ(k ⊗An ker(p)) = ξ(k ⊗An ker(p′)).

Remark 3.7. ξ0(M) and ξ1(M) are discrete but not complete for M ∈ Grfin. Consider for
instance M1 = N1

/
T1 and M2 = N2

/
T2 where

N1 = N2 = A2 ⊕A2,

T1 =
(
x31, x

2
1x2, x1x

2
2, x

3
2

)
⊕ 0 ⊆ N1,

T2 =
(
x31, x

2
1x2
)
⊕
(
x1x

2
2, x

3
2

)
⊆ N2.

Then we have

ξ0(M1) = ξ0(M2) = {((0, 0), 1), ((0, 0), 2)},
ξ1(M1) = ξ1(M2) = {((3, 0), 1), ((2, 1), 1), ((1, 2), 1), ((0, 3), 1)},

but M1 and M2 are not isomorphic.

Denote I(ξ0, ξ1) the set of isomorphism classes [M ] of M ∈ Grfin(An) with ξ0 = ξ0(M) and
ξ1 = ξ1(M). Denote F = F(ξ0) the free finitely generated n-graded An-module over the multiset
ξ0 and S(ξ0, ξ1) the set of all n-graded An-submodules L ⊆ F which satisfy ξ(k ⊗An L) = ξ1 .
Aut(F ) acts on S(ξ0, ξ1) via g · L = g(L) for g ∈ Aut(F ). We define a map

qξ0,ξ1 : S(ξ0, ξ1) −→ I(ξ0, ξ1), L 7−→
[
F /L

]
.

Remark 3.8. We need a condition that makes F the free hull of F /L which is not true in
general. Otherwise, it would not be clear if the map F 7−→

[
F /L

]
is well-defined. Consider

for instance L = An as submodule of F = An ⊕ An via embedding into the first component.
Then we have F /L ∼= k. After tensoring we get k ⊗An F

∼= k2 and k ⊗An
F /L ∼= k which shows

that F is not the free hull of F /L . A condition to fix the problem could be to assume that
idk ⊗An i : k ⊗An L→ k ⊗An F is the zero map where i : L→ F denotes the canonical inclusion.

Theorem 3.9 ([CZ09, §4.5, Thm.9], Classification). The map qξ0,ξ1 satisfies the formula qξ0,ξ1(g ·
L) = qξ0,ξ1(L) and consequently induces a map

qξ0,ξ1 : S(ξ0, ξ1)
/

Aut(F ) −→ I(ξ0, ξ1).

where S(ξ0, ξ1)
/

Aut(F ) := {Aut(F ) ·L | L ∈ S(ξ0, ξ1)} denotes the orbit space. Moreover, qξ0,ξ1
is bijective.

3



Proof.

1. For g ∈ Aut(F ) we have a commutative diagram

F
g //

��

F

��
F /L

g

∼
// F
/
g(L)

where g is an isomorphism and thus qξ0,ξ1(g · L) = qξ0,ξ1(L).

2. For surjectivity it suffices to show that qξ0,ξ1 is surjective. Let M ∈ I(ξ0, ξ1). By Theorem
3.4 there exists a surjection p : F → M . We have ξ(k ⊗An ker(p)) = ξ1(M) = ξ1 by
assumption, thus ker(p) ∈ S(ξ0, ξ1) and clearly qξ0,ξ1(ker(p)) ∈ I(ξ0, ξ1) which shows
surjectivity.

3. For injectivity, we suppose that we are given L,L′ ∈ S(ξ0, ξ1) with qξ0,ξ1(L) = qξ0,ξ1(L′),
i.e. it exists an isomorphism α : F /L → F /L′ . By Theorem 3.4 α lifts to α̃ ∈ Aut(F ) s.t.

F
α̃ //

��

F

��
F /L

α
∼

// F /L′

commutes and therefore L ∼=α̃ L
′.

What we have seen in this section is that M ∈ Grfin(An) is completely classified by ξ0(M),
ξ1(M) and Q(M) := qξ0(M),ξ1(M)

−1(M), i.e. for M,M ′ ∈ Grfin(An) holds M ∼=Grfin(An) M
′ if

and only if ξ0(M) = ξ0(M
′), ξ1(M) = ξ1(M

′) and Q(M) = Q(M ′). The invariants ξ0(M) and
ξ1(M) are discrete. Unfortunenately it turns out that Q(·) yields a continouus and not a discrete
invariant, which is shown in [CZ09, §5] by realizing I(ξ0, ξ1) as the orbit space of an algebraic
group action.

3.2. Parametrization

In the following we summarize the results of [CZ09, §5]. The following definition is a refinement
of the definition in [CZ09, §5.1] motivated by the extra condition which was necessary to make
qξ0,ξ1 well defined, by Example 3.14 and the definition of relation families in ([CZ07, Def.9]) where
[CZ07]) is an earlier and different version of [CZ09].

Definition 3.10 ([CZ09, §5.1] , refined). Let ξ0 = (V0, α0), ξ1 = (V1, α1) be finite multisets and
δ : V1 → Z≥0 a map. ARRξ1,δ(F (ξ0)) denotes the set of families (Lv)v∈V1 where Lv ⊆ F (ξ0)v
are k-linear such that for all v ∈ V1:

1. dimk(Lv) = δ(v).

2. dimk

(
Lv
/∑

v′≺v x
v−v′Lv′

)
= α1(v)

3. v′ � v =⇒ xv−v
′
Lv′ ⊆ Lv.

4. idk ⊗An i : k ⊗An Lv → k ⊗An F is the zero map where i : Lv → F denotes the canonical
inclusion.
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It remains to show if condition 4. in Definition 3.11 is already contained in 1.-3. or not. In [CZ09,
§5.1] they claim a bijection between S(ξ0, ξ1) and ARRξ1,δ(F (ξ0)) for certain δ. Adjusting the
notions of [CZ07, §8.3] to the situation in [CZ09] in order to get an analogous result I suggest the
following:

Proposition 3.11. For ξ0 = (V0, α0) , ξ1 = (V1, α1) finite mulitsets and δ = dimk

(
F (ξ1)(·)

)
, the

following map is a bijection

S(ξ0, ξ1)
∼−−→ ARRξ1,δ(F (ξ0)),

L 7−→ (Lv)v∈V1∑
v∈V1

(Lv)An 7−→(Lv)v∈V1

Remark 3.12. The map in the above propostion is not given explicitly in [CZ09].

For a vectorspace W of dimension n denote Grd(W ) := {U ⊆W | dimk(U) = d} the Grassman-
nian.

Theorem 3.13 ([CZ09, §5.1], Parametrization). ARRξ1,δ(F (ξ0)) identifies with a subprevariety
of the projective variety

∏
v∈V Grδ(v)(Fv) and in particular for δ = dimk

(
F (ξ1)(·)

)
, S(ξ0, ξ1) ∼=

ARRξ1,δ(F (ξ0)) becomes a prevariety in a natural way. Moreover, the group action

Aut(F ) y S(ξ0, ξ1)

is an algebraic group action.

Proof. The basic idea in [CZ09, §5.1] is to interprete the (containment) conditions 1.-3. in
Definition 3.10 algebraically. But the question that arises from Remark 3.8 is how to translate
the additional condition which is necessary to make the assignment L→ F /L well defined into
an algebraic condition (if the condition is not optional in Definition 3.11). By [CZ09, Thm.5] one
can equip Aut(F ) with an algebraic group structure.

Example 3.14 ([CZ09, §5.2], Continouus invariant, refined). Consider M ∈ Grfin(An) as in
Remark 3.7 with

ξ0(M) = ξ0 = {((0, 0), 1), ((0, 0), 2)}
ξ1(M) = ξ1 = {((3, 0), 1), ((2, 1), 1), ((1, 2), 1), ((0, 3), 1)}

We have Aut(F(ξ0)) = GL2(k) by [CZ09, Thm.5]. For each (v, i) ∈ ξ1 we have F(ξ0)v ∼=k k
2 and

dimk(F(ξ1)v) = 1. One can easily check that the conditions 1.-4. in Definition 3.10 are trivial
and hence

ARRξ1,dimk(F (ξ1)(·))(F (ξ0)) =
∏
v∈V1

Grdimk(F(ξ1)v)(F(ξ0)v) = Gr1
(
k2
)4

= P1(k)4

and therefore

P1(k)4
/

GL2(k) ∼= I(ξ0, ξ1).

Let Ω := {(l1, l2, l2, l4) ∈ P1(k)4 | li 6= lj for i 6= j} ⊆ P1(k)4 denote the subspace of pairwise
distinct lines. Ω is clearly GL2(k) invariant and by [CZ09, §5.3] we get

P1(k)4
/

GL2(k) ⊇ Ω
/

GL2(k) = P1(k) \ {0, 1,∞} = k \ {0, 1}

which shows the continuous character of Q if k is uncountable.
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3.3. The rank invariant

Definition 3.15 ([CZ09, §6, Def.5], Dn). Let N := N ∪ {∞} with u ≤ ∞ for all u ∈ N. Let
Dn ⊆ Nn × Nn be the subset above the diagonal, i.e. Dn = {(u, v) | u ∈ Nn, v ∈ Nn, u � v}. For
(u, v), (u′, v′) ∈ Dn, we define (u, v) � (u′, v′) if and only if u � u′ and v � v′.

Remark 3.16. (Dn,�) is a quasi-partially ordered set.

Definition 3.17 ([CZ09, §6, Def.6] Rank invariant ρM ). Let M ∈ Grfin(An). We define

ρM : Dn −→ N, (u, v) 7−→ rank(xv−u : Mu →Mv)

Remark 3.18. The function ρM is clearly a discrete invariant for M ∈ Grfin(An).

Lemma 3.19 ([CZ09, §6, Lem.7] Order-preserving). For all (u, v), (u′, v′) ∈ Dn it holds that
(u, v) � (u′, v′) implies ρM (u, v) ≤ ρM (u′, v′). Therefore, ρM is an order-preserving function from
(Dn,�) to (N,≤).

Proof. We have rank(f ◦ g) ≤ rank(f), rank(g) for any linear transformations f, g.

Theorem 3.20 ([CZ09, §6, Thm.12]). The rank invariant ρM is complete for M ∈ Grfin(A1).

Proof. The idea is to show that

Ψ : Bar −→ Rank, Ψ(ξ)(t, s) := {
(
(t′, s′), i

)
∈ ξ | (t, s) ⊆ (t′, s′)}

is a bijection between the set of Barcodes Bar and the set of rank invariants Rank.
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