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1 Introduction

Given a point cloud X, it is a natural question to ask for the stability of the persistence
diagram of the filtration of alpha complexes of X against perturbations of the latter.
This is precisely what persistence theorems accomplish, making persistent homology a
useful notion in the analysis of potentially noisy data.

In this Journal Club contribution we describe two of the first such stability results,
for two different types of metrics on persistence diagrams: the Bottleneck and the
Wasserstein distance. Actually, both do not describe persistence diagrams of inter alia
alpha complexes of point clouds, but, instead, those of the filtration of sublevel sets of
functions with preimage a triangulable topological space.

Throughout this section, a persistence diagram can be regarded as a multiset of
points in the plane R̄2, all laying above the diagonal. We may add arbitrarily many
points on the diagonal, which have zero persistence, making them not essential to
the diagram but simplifying definitions. We work with homology groups having Z2-
coefficients.

2 Bottleneck distance stability

Let X,Y be two persistence diagrams and η : X → Y a bijection between them, possibly
adding points to the diagonal to be able to define a bijection. Measuring the distance
between two points x = (x1, x2) and y = (y1, y2) as ||x− y||∞ = max{|x1− y1, x2− y2|}
and taking the infimum over all bijections, we define the bottleneck distance between X
and Y as

W∞(X,Y ) = inf
η:X→Y

sup
x∈X
||x− η(x)||∞. (1)

Indeed, with W∞(X,Y ) = 0 if and only if X = Y , W∞(X,Y ) = W∞(Y,X) and
W (X,Z) ≤W∞(X,Y ) +W∞(Y,Z) we find that W∞ is a metric on the space of persis-
tence diagrams.

We note that homology groups can be defined not only for simplicial complexes, but
also for any topological space, for example via singular homology. For details on this
we refer to Refs. [1, 2].

Definition 1. Let T be a topological space and f a real function on T . A homological
critical value of f is a real number a for which there exists an integer k such that for
all sufficiently small ε > 0 the map Hk(f

−1(−∞, a− ε])→ Hk(f
−1(−∞, a+ ε]) induced

by inclusion is not an isomorphism.
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Definition 2. A function f : T → R is tame if it has a finite number of homological
critical values and the homology groups Hk(f

−1(−∞, a]) are finite-dimensional for all
k ∈ Z and a ∈ R.

Let f : T → R be such a tame function and set Xa := f−1((−∞, a]). Noting that
Xa ⊆ Xb whenever a ≤ b, we obtain the filtration of sublevel sets. To this end, for any
a ≤ b there exists a map ιa,b` : H`(Xa)→ H`(Xb) induced by the inclusion. We say that

a class α ∈ H`(Xa) is born at Xa if α /∈ im(ιa−δ,a` ) for any δ > 0, setting b(α) = a.

A class α born at Xa dies entering Xb if ιa,b−δ` (α) /∈ im(ιa−δ,b−δ` ) for all δ > 0 but

ιa,b` (α) ∈ im(ιa−δ,b` ), setting d(α) = b. We define its persistence as pers(α) = d(α)−b(α).
By Dgm`(f) we denote the corresponding persistence diagram, consisting of all points
(b(α), d(α)) for `-dimensional persistent homology classes α.

We recall that a topological space is triangulable if there is a (finite) simplicial
complex with homeomorphic underlying space.

Following Ref. [3], the Bottleneck stability theorem finally reads as follows.

Theorem 1 (Bottleneck stability theorem). Let T be a triangulable space with con-
tinuous tame functions f, g : T → R. Then the persistence diagrams satisfy for all
` ∈ N

W∞(Dgm`(f),Dgm`(g)) ≤ ||f − g||∞ = sup
x
|f(x)− g(x)|. (2)

To this extend, under mild assumptions on the function, the persistence diagram is
stable. Small changes in the function imply only small changes in the diagram. The
proof of the theorem proceeds via diagram chasing and an intermediate upper bound
on the Hausdorff distance between the persistence diagrams.

3 Wasserstein distance stability

The Wasserstein stability theorem we deduce in somewhat more detail than the Bot-
tleneck stability theorem. Derivations proceed along the lines of Ref. [4]. We begin by
stating preliminary technicalities.

Let X be a triangulable, compact n-dimensional metric space, d : X × X → R
its metric. As stated previously, a triangulation of X is a finite simplicial complex K
with homeomorphism ϑ : |K| → X. We define the diameter of a simplex σ ∈ K as
diam(σ) := maxx,y∈σ d(ϑ(x), ϑ(y)) and the mesh of a triangulation K as mesh(K) :=
maxσ∈K diam(σ). For all 0 ≤ ` ≤ n we denote the `-skeleton of K by K(`). We are
interested in the smallest triangulation with mesh at most r,

N(r) := min
mesh(K)≤r

card(K), N`(r) := min
mesh(K)≤r

(card(K(`))− card(K`−1)). (3)

As an example consider X a compact Riemannian manifold. Then, for sufficiently small
r there exist c, C > 0, such that c/rn ≤ N(r) ≤ C/rn.

Additionally, for any subset z ⊆ X, we define

zr := {x ∈ X | ∃ y ∈ z : d(x, y) ≤ r}. (4)

A series of lemmas brings us to the main results.

Lemma 1 (Snapping Lemma). Let K be a triangulation of a compact metric space X
with mesh(K) = r. Then for each cycle z of dimension ` in X there is a cycle z̄ in the
`-skeleton of K that is homologous to z inside zr.
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A crucial ingredient of Wasserstein stability is the involved functions being Lipschitz.
A function f : X → R is Lipschitz on X, if there exists a positive constant c, such that
|f(x) − f(y)| ≤ c d(x, y) for any x, y ∈ X. The infimum of such c is called Lipschitz
constant and denoted by Lip(f).

A useful lemma follows, including persistent homology notions.

Lemma 2 (Persistent Cycle Lemma). Let X be a triangulable, compact metric space,
f : X → R a tame Lipschitz function. Then the number of points in the persistence
diagrams of f whose persistence exceeds ε is at most N(ε/Lip(f)).

We define the degree-k total persistence,

Persk(f, t) :=
∑

pers(x)>t

pers(x)k, Persk(f) := Persk(f, 0). (5)

Lemma 3 (Moment Lemma). Let X be a triangulable, compact metric space, f : X →
R a tame Lipschitz function. Then,

Persk(f, t) ≤ tkN
(

t

Lip(f)

)
+ k

∫ Amp(f)

ε=t
N

(
ε

Lip(f)

)
εk−1 dε, (6)

setting Amp(f) = maxx∈X f(x)−miny∈X f(y).
The first term on the right-hand side of Eq. (6) we denote by A, the second by B.
We define the notion of polynomial growth and bounded total persistence in what

follows. Assume that the size of the smallest triangulation grows polynomially with one
over the mesh, that is, there exist C0,M > 0, such that N(r) ≤ C0/r

M for all r > 0.
Let δ > 0 and k = M + δ. We then find upper bounds for A and B:

A ≤ C0Lip(f)MAmp(f)δ, B ≤ C0Lip(f)MAmp(f)δ
M + δ

δ
, (7)

which motivates the introduction of the following concept.

Definition 3. A metric space X implies bounded degree-k total persistence, if there
exists a constant CX > 0 depending only on X, such that Persk(f) ≤ CX for every
tame function f : X → R with Lip(f) ≤ 1.

As an example consider X = Sn. One finds a C0 > 0, such that N(r) ≤ C0/r
n.

Thus, a C > 0 exists with Persk(f) ≤ C for some C and every k = n+ δ, δ > 0.
Let f, g : X → R be two tame functions with persistence diagrams Dgm`(f) and

Dgm`(g), respectively, ` ∈ N. The degree-p Wasserstein distance between the persis-
tence diagrams of f and g is defined as

Wp(f, g) =

[∑
`

inf
γ`

∑
x

||x− γ`(x)||p∞

]1/p
, (8)

where the first sum runs of all dimensions `, the infimum is taken over all bijections
γ` : Dgm`(f) → Dgm`(g), adding zero-persistence points to render this well-defined,
and the second sum is over all x ∈ Dgm`(f).

Theorem 2 (Wasserstein Stability Theorem). Let X be a triangulable, compact metric
space that implies bounded degree-k total persistence for k ≥ 1, and let f, g : X → R be
two tame Lipschitz functions. Then,

Wp(f, g) ≤ C1/p
k · ||f − g||1−k/p∞ (9)

for all p ≥ k and Ck = CX max{Lip(f)k,Lip(g)k}.
Another result follows quickly.
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Theorem 3 (Total Persistence Stability Theorem). Let X be a triangulable, compact
metric space that implices bounded degree-k total persistence for k ≥ 0, and let f, g :
X → R be two tame Lipschitz functions. Then,

|Persp(f)− Persp(g)| ≤ 4pwp−1−k Ck · ||f − g||∞, (10)

for every real p ≥ k+ 1, Ck := CX max{Lip(f)k,Lip(g)k} and w is bounded from above
by max{Amp(f),Amp(g)}.

As the notation suggests, the Bottleneck distance, W∞, arises as the limit of the
Wasserstein distance, Wp, for p → ∞ [5]. To this end, under the assumptions of the
Wasserstein stability theorem the Bottleneck stability theorem follows.
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