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This talk is mainly based on

Bauer & Edelsbrunner, The Morse theory of Čech and Delaunay
complexes in Trans. Amer. Math. Soc. 369, 2017.
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Čech and Delaunay complexes
Let X ⊂ Rn be a point cloud. Čech complex:

Čechr (X ) =

{
Q ⊆ X

∣∣∣∣ ⋂
x∈Q

Br (x) 6= ∅
}
⊆ 2X .

Voronoi balls:

Vorr (x ,X ) = Br (x) ∩ {y ∈ Rn | d(y , x) ≤ d(y , p) for all p ∈ X},

leading to the Delaunay complex

Delr (X ) =

{
Q ⊆ X

∣∣∣∣ ⋂
x∈Q

Vorr (x ,X ) 6= ∅
}
.

Voronoi diagram and its nerve, the
Delaunay triangulation Del∞(X ).
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Delaunay-Čech complexes and relations

Delaunay-Čech complex:

DelČechr (X ) =

{
Q ∈ Del∞(X )

∣∣∣∣ ⋂
x∈Q

Br (x) 6= ∅
}
.

Find that all complexes form a filtration, e.g., Delr (X ) ⊆ Dels(X )
for all r ≤ s. Clearly,

Delr (X ) ⊆ DelČechr (X ) ⊆ Čechr (X ).

Wrap complex: subcomplex of Delaunay complex constructed from
gradient of Delaunay radius function (not detailed here).
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The Čech-Delaunay collapsing theorem

Theorem. Let X be a finite set of possibly weighted points in
general position in Rn. Then

Čechr (X )↘ DelČechr (X )↘ Delr (X )↘Wrapr (X )

for every r ∈ R.

Simplicial complexes, reprinted from Bauer & Edelsbrunner 2017.
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Embedding into literature

I generalizes and unifies previous Morse-theoretic treatments of
selective Delaunay complexes
e.g., Attali, Lieutier & Salinas in Comp. Geom. 46(4), 2013

I Continuous Morse theory for distance functions of finite point
sets has been investigated
e.g., Bobrowski & Adler in Homology, Homotopy and Applications 16(2), 2014

=⇒ here, combinatorial structures from discrete gradient

I Extends collapse of Delaunay-Čech to Delaunay complex,
which has been known before
Bauer & Edelsbrunner in Journal of Computational Geometry 6(2), 2015.
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Discrete Morse theory I

For enjoyable intro to discrete Morse theory see Forman, A user’s
guide to discrete Morse theory in Séminaire Lotharingien de
Combinatoire 48, 2002.

Recap. Finite set X ⊆ Rn. Call subset Q ⊆ X of q + 1 points a
q-simplex. Its faces are subsets of Q and facets are faces of
dimension q − 1. Simplicial complex is collection of simplices, K ,
closed under face relation.

Face relation defines canonical partial order on K .

Hasse diagram H(K ) is transitive reduction of this order, i.e.,
H(K ) is the directed acyclic graph whose nodes are the simplices
and arcs are pairs (P,Q) in which P is a facet of Q.
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Discrete Morse theory II

Discrete vector field is a partition V of K into singleton sets {C}
and pairs {P,Q} corresponding to arcs (P,Q) in the Hasse
diagram.

Suppose function f : K → R with f (P) ≤ f (Q) whenever P is face
of Q with equality iff (P,Q) is pair in V . Then f is discrete Morse
function and V its discrete gradient.

Simplex that does not belong to any pair in V is critical simplex
and corresponding value of f is critical value of f .

Discrete gradient, reprinted from Forman 2002.
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Discrete Morse theory III

Pairs in discrete gradient correspond to elementary collapses,
realized continuously by a deformation retract. Thus, if can
transform simpl. complex K to another K ′ using sequence of
elementary collapses, then K and K ′ are homotopy-equivalent.

Here: stronger notion of simple-homotopy equivalence. Simplicial
collapses instead of elementary ones.
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Discrete Morse theory IV

Call a face τ ⊆ σ ⊆ K free, if σ is a facet of K and no other facet
of K contains τ . A simplicial collapse of K is the removal of all
simplices γ with τ ⊆ γ ⊆ σ, where τ is a free face of σ.
If τ is facet of σ, then ”elementary collapse”.

Simplicial collapse, reprinted from Forman 2002.

Complex that has sequence of collapses leading to point is called
collapsible. Every collapsible complex is contractible, but the
converse is not true (cf. e.g. Bing’s house or the dunce hat).
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Outlook: Discrete Morse theory

Diverse fascinating applications of discrete Morse theory exist.
Examples (following Forman 2002):

I The complex of not connected graphs: Vassiliev has shown
how to derive finite type knot invariants from the study of the
space of singular knots (i.e., maps from S1 to R3 which are
not embeddings) using discrete Morse theory.
Vassiliev, arXiv.1409.5999

I Considerations of supersymmetry in quantum physics lead
Witten to smooth Morse theory. Witten’s derivation can be
carried out in the discrete setting, too.
Forman in Topology 37(5), 1998

I Investigations of certain Betti numbers of infinite simplicial
complexes K which arise as a covering space of a finite
simplicial complex K ′.
Mathai & Yates in Journal of functional analysis 168(1), 1999.
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Generalized discrete Morse theory I

Interval in face relation of K is subset of form

[P,R] = {Q |P ⊆ Q ⊆ R}.

Call a partition W of K into intervals a generalized discrete vector
field. Suppose function f : K → R with f (P) ≤ f (Q) whenever P
is face of Q, equality iff P and Q belong to common interval in
W . Then, f is generalized discrete Morse function and W is its
generalized discrete gradient.
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Generalized discrete Morse theory II

If interval contains only one simplex, then ”singular”, the simplex
is critical and the value of the simplex is a critical value of f .

For every generalized discrete gradient there is a discrete gradient
refining every non-singular interval [P,R] into pairs.

Theorem. Let K be a simplicial complex with a generalized
discrete gradient V , and let K ′ ⊆ K be a subcomplex. If K \ K ′ is
a union of non-singular intervals in V , then K ↘ K ′.
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Selective Delaunay complexes I

Let X ⊂ Rn be finite set, E ⊆ X , r ≥ 0. Define

Vorr (x ,E ) := Br (x) ∩ {y ∈ Rn | d(y , x) ≤ d(y , p) for all p ∈ E}.

Selective Delaunay complex:

Delr (X ,E ) =

{
Q ⊆ X

∣∣∣∣ ⋂
x∈Q

Vorr (x ,E ) 6= ∅
}
.

Selective Delaunay complexes, reprinted from Bauer & Edelsbrunner 2017.
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Selective Delaunay complexes II

Note that

Delr (X , ∅) = Čechr (X ), Delr (X ,X ) = Delr (X ).

Define Del(X ,E ) := Del∞(X ,E ).
Individual such Voronoi balls depend on E , but union does not.
Hence, nerve theorem implies that for given X and r , all selective
Delaunay complexes have same homotopy type.
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Radius functions

Consider Q,E ⊆ X ⊆ Rn. A (n − 1)-sphere S ⊂ Rn includes
Q ⊆ X if all points of Q lie on or inside S , it excludes E ⊆ X if all
points of E lie on or outside S . Set of such spheres may be empty,
but if not, define Delaunay sphere S(Q,E ) with squared radius
s(Q,E ) as smallest such sphere.

Radius function for E maps each simplex to squared radius of
Delaunay sphere,

sE : Del(X ,E )→ R, sE (Q) = s(Q,E ),

assuming s(Q,E ) exists.

Radius function lemma. Let X ⊆ Rn be finite, E ⊆ X and r ≥ 0.
A simplex Q ∈ Del(X ,E ) belongs to Delr (X ,E ) iff sE (Q) ≤ r2.
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Convex optimization I

Can determine whether or not a simplex Q belongs to Delr (X ,E )
by solving a convex optimization problem:

S(Q,E ) is the sphere with center z and radius r ≥ 0 that
minimizes r2 subject to the conditions

d(z , q)2 ≤ r2 ∀q ∈ Q, d(z , e)2 ≥ r2 ∀e ∈ E .

Generalize to weighted setting: associate weight wx ∈ R to
each point x ∈ X . Sphere S of (possibly negative) radius s with
center z includes a point x with weight wx if d(z , x)2 ≤ s + wx , it
excludes x if d(z , x)2 ≥ s + wx . Then S(Q,E ) is the sphere that
minimizes s ∈ R subject to the conditions

d(z , q)2 ≤ x + wq ∀q ∈ Q, d(z , e)2 ≥ s + we ∀e ∈ E .
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Convex optimization II: Karush-Kuhn-Tucker conditions

General optimization problem: minimize f (y) subject to constraints

gj(y) ≤ 0∀j ∈ J, gk(y) = 0 ∀k ∈ K gl(y) ≥ 0 ∀l ∈ L,

in which J,K , L are pairwise disjoint index sets.

Assuming f is convex and the gi are affine, the
Karush-Kuhn-Tucker conditions say that y is an optimal
solution iff there exist coefficients λi ∈ R for all i ∈ I = J ∪ K ∪ L
such that

(i) stationarity: ∇f (y) +
∑

i∈I λi∇gi (y) = 0,

(ii) complementary slackness: λigi (y) = 0 for all i ∈ I ,

(iii) dual feasibility: λj ≥ 0 for all j ∈ J and λl ≤ 0 for all l ∈ L.
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Convex optimization III: Recasting our problem

Introduce a = ||z ||2 − s, y = (z , a). Set K = Q ∩ E , J = Q \ E ,
L = E \ Q,

f (y) = s = ||z ||2 − a,

and the affine constraints for all x ∈ Q ∪ E :

gx(y) = ||z − x ||2 − s − wx = −2〈z , x〉+ a + ||x ||2.

Defines optimization problem equivalent to the original one.
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Convex optimization IV

Special KKT conditions. Let S be a sphere that includes Q ⊆ X
and excludes E ⊆ X . Then S is the smallest such sphere iff its
center is an affine combination of the points x ∈ Q ∪ E ,

z =
∑

λxx with 1 =
∑

λx ,

such that

(i) λx = 0 whenever x does not lie on S ,

(ii) λx ≥ 0 whenever x ∈ Q \ E , and

(iii) λx ≤ 0 whenever x ∈ E \ Q.
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Convex optimization V: combinatorial formulation

A circumsphere of a set P ⊆ Rn is an (n − 1)-sphere such that all
points of P lie on the sphere. If P is affinely independent, such a
circumsphere exists. For sets of n of fewer points the circumsphere
is not unique, but by the special KKT conditions a unique smallest
circumsphere exists.

General position assumption. A finite set X ⊂ Rn is in general
position if for every P ⊆ X of at most n + 1 points

(i) P is affinely independent,

(ii) no point of X \ P lies on the smallest circumsphere of P.
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Convex optimization VI: combinatorial formulation

X finite set of weighted points in general position. Let S be
(n − 1)-sphere. Write InclS ,ExclS ⊆ X for the subsets of
included and excluded points, OnS = InclS ∩ ExclS .

Assume S is smallest circumsphere of some set P, i.e., center z of
S lies in affine hull of P and P = OnS by general position. Have

z =
∑

x∈OnS

ρxx with 1 =
∑

x∈On S

ρx .

By general position, affine combination is unique and ρx 6= 0 for all
x ∈ OnS . Front face and back face of OnS :

FrontS = {x ∈ OnS | ρx > 0}, Back S = {x ∈ OnS | ρx < 0}.

Have Back S = ∅ iff circumcenter z is contained in convex hull of
OnS .
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Convex optimization VII: combinatorial KKT conditions

Theorem. Let X ⊂ Rn be a finite set of weighted points in
general position. Let Q,E ⊆ X for which there exists a sphere S
with Q ⊆ InclS and E ⊆ ExclS . It is the smallest such sphere,
S = S(Q,E ), iff

(i) S is the smallest circumsphere of OnS ,

(ii) FrontS ⊆ Q,

(iii) Back S ⊆ E .
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Convex optimizatoin VIII: partition into intervals

Fix E ⊆ X ; recall sE maps Q ∈ Del(X ,E ) to squared radius of
S = S(Q,E ). Implies sE (P) = sE (Q) for all P ∈ [FrontS , InclS ].

To prove that sE is generalized discrete Morse function remains to
show that sE (P) < sE (Q) whenever P ⊆ Q do not belong to same
interval. But this is clear from general position assumption.

Selective Delaunay Morse function theorem. Let X ⊂ Rn be
finite set of weighted points in general position, E ⊆ X . Then
sE : Del(X ,E )→ R is generalized discrete Morse function whose
discrete gradient consists of the intervals [FrontS , InclS ] over all
Delaunay spheres S = S(Q,E ) with Q ∈ Del(X ,E ).
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Convex optimization IX: partition into intervals

Call Q ∈ Del(X ) a centered Delaunay simplex if the center of
S = S(Q,X ) is contained in the convex hull of Q. In that case,
S = S(Q,E ) for all sets E ⊆ X .

Critical simplex corollary. Let X ⊂ Rn be finite set of weighted
points in general position. Independent of E , a subset Q ⊆ X is a
critical simplex of sE iff s(Q, ∅) = s(Q,E ) = s(Q,X ) iff Q is a
centered Delaunay simplex.
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Strategy

Write Q − x = Q \ {x} and Q + x = Q ∪ {x}, one of these being
equal to Q. Construct two discrete gradients. First one is defined
on the full simplex of X and induces the simplicial collapse
Čechr (X )↘ DelČechr (X ) by removing all non-Delaunay
simplices. The second discrete gradient is defined on Del(X ) and
induces the collapse DelČechr (X )↘ Delr (X ).

Gradients are constructed by assigning to each collapsed simplex
Q ∈ Delr (X ,E )↘ Delr (X ,E ) for E ⊆ F ⊆ X a point x ∈ F \ E
that turns the sphere S(Q,E ) infeasible for the excluded set F .
Thus, S(Q,F ) will either have a larger radius or not exist at all.
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Pairing lemmas

First simplex pairing lemma. Let E ⊆ F ⊆ X and
Q ∈ Del(X ,F ) with S(Q,E ) 6= S(Q,F ). Then there exists a point
x ∈ F \ E such that

(i) S(Q − x ,E ) = S(Q + x ,E ),

(ii) S(Q − x ,F ) = S(Q + x ,F ).

Second simplex pairing lemma. Let E ⊆ F ⊆ X and let Q be a
simplex in Del(X ,E ) but not in Del(X ,F ). Then there exists a
point x ∈ F \ E such that

(i) S(Q − x ,E ) = S(Q + x ,E ),

(ii) both Q − x and Q + x are not in Del(X ,F ).
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Collapsing I

Selective Delaunay collapsing theorem. Let X ⊂ Rn be a finite
set of possibly weighted points in general position and let
E ⊆ F ⊆ X . Then,

Delr (X ,E )↘ Delr (X ,E ) ∩Del(X ,F )↘ Delr (X ,F )

for every r ∈ R.

Idea of proof: show that both collapses are induced by discrete
gradients constructed with the help of the two simplex pairing
lemmas and additional auxiliary lemmas (not presented here).
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Collapsing II

Setting E = ∅, F = X , find from selective Delaunay collapsing
theorem with additional arguments for the Wrap complex (not
given here):

Čech-Delaunay collapsing theorem. Let X ⊂ Rn be a finite set
of possibly weighted points in general position. Then

Čechr (X )↘ DelČechr (X )↘ Delr (X )↘Wrapr (X )

for every r ∈ R.
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Naturality and persistence I

A natural transformation from a filtration (Kt)t∈R to another
filtration (Lt)t∈R is a family of continuous maps Kt → Lt such that
the diagram

commutes for all r ≤ t. Persistent homology of (Kt)t∈R is the
diagram of homology groups H∗(Kt) connected by the
homomorphisms induced by inclusions Kr ↪→ Kt for r ≤ t.
Homology being a functor, it sends a natural transformation of
filtrations to a natural transformation of their persistent homology.
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Naturality and persistence II

By the Čech-Delaunay collapsing theorem, the diagram

commutes for all r ≤ t. Horizontal inclusion maps in this diagram
correspond to collapses of the Čech-Delaunay collapsing theorem,
i.e., inclusion maps constitute a natural transformation, which is a
simple-homotopy equivalence at each filtration index. Thus,

Persistence isomorphism corollary. The Čech, Delaunay-Čech,
Delaunay and Wrap filtrations have isomorphic persistent
homology.

36/36


	Contents
	The central result
	Discrete Morse theory preliminaries
	Selective Delaunay complexes and convex optimization
	Simple-homotopy equivalence
	Implications

